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Extended Abstract 
 
In recent years nonlinear dynamics of micro- and nano- beam arrays have been extensively studied as they 

offers significantly increased sensitivity of the frequency bandwidth in comparison to the frequency bandwidth 

from a single element. In Ref. [1] arrays of four and eight resonant cantilevers were fabricated using polysilicon 

and electrically excited for high sensitive mass detection. A numerical method to manipulate intrinsic localized 

mode (ILM) was discussed for a coupled micorcantilever array by determining a nonlinear coupling coefficient 

of coexisting and dynamical stability of standing ILMs [2]. Periodic, quasiperiodic and chaotic dynamics of 

an initial boundary value problem for a three element array with several internal resonances was investigated 

in Ref. [3]. A stepped cantilever composed of a bottom-up silicon nanowire to a top-down silicon 

microcantilever subjected to electrostatic excitation was analysed theoretically and experimentally which 

facilitates an improvement in mass sensing resolution with respect to that of the microcantilever standalone 

[4]. In Ref. [5] a mechanically coupled two beam cantilever array was analysed to show enhanced sensitivity 

of an AFM array as compared to an individual beam. In this work, we numerically study the nonlinear 

dynamics of N elastically coupled hybrid micro-cantilever beams to investigate various coexisting periodic 

and aperiodic solutions.     

 

 

 

Table 1: Comparison of frequency 

ratios between experimental 

measurements and Numerical analysis. 

Frequency 

ratios 
Experimental Numerical 

f5/f4 1.0084 1.0084 

f5/f3 1.018 1.018 

f4/f3 1.01 1.01 
 

Figure 1: (a) SEM image (b) Definition sketch (c) Experimental 

measurements (d) Numerical frequency response (with Q=200, 

Vac=0.707 V, Vdc=30 V) for an array of five micro-cantilever beams. 

Problem Formulation and Validation 

 
We derive a continuum mechanics-based nonlinear model for an array of N micro-cantilever beams with step-

like heterogeneity of its width subjected to electrostatic excitation along out-of-plane direction as shown in 

Fig. 1 (a) and (b). Each beam element in coupled array is divided into two fields: the cantilever with width B2 

and a base with width B1 as shown in Fig. 1 (b). The base elements are assumed to be rigidly fixed at the 

fixed end and bonded to the base of their respective cantilever sections. Each base element is coupled to its 

neighboring base elements through an elastic spring constant kc [5], which acts in the z direction only. 

Neglecting nonlinearity in base field, the two field equations of motion [4] governing an array of N micro-

cantilever beams augmented with gyroscopic and bending nonlinearity, nonlinear damping are derived. We 

employ Galerkin method and obtain modal dynamic equations. Subsequently, we perform equilibrium analysis 

for an array of five microbeams to find the effective value of elastic spring constant yielding the theoretical 

linear frequencies which satisfies the experimental measurements as shown in Fig. 1(c). Finally, with the clue 



 

of linear analysis we perform forced frequency analysis numerically (Fig. 1(d)) to find an effective elastic 

spring constant to yield theoretical frequency ratios which are in good agreement with the experimental 

measurements as shown in Table 1.  

 

Numerical Analysis of N micro-cantilever beams 
    

A numerical analysis of five beam array and twenty five beam array is shown in Fig. 2. The frequency response 

curve for an array of five beams (Fig. 2(a)) reveals four bifurcation regions (Fig, 2(b)). It is observed that the 

regions I, II (small amplitude) and IV have periodic solutions whereas regions II (large amplitude) and III have 

quasiperiodic solutions. The time history and phase plane with Poincare/ points in region III are shown in Fig. 

2 (c) and (d). The frequency response curve for an array of twenty five beams (Fig. 2(e)) depicts four 

bifurcation regions (Fig. 2(f)). The regions I and IV have periodic solutions. The region II for small amplitude 

is quasiperiodic. The region II for large amplitude and the subregion A of region III have chaotic solutions. 

The chaotic solutions transforms into the complex quasiperiodic solutions in subregion B and the complicated 

quasiperiodic solutions ends as simple tori in subregion C of region III. The time history and Poincare/ map 

for chaotic solution in region III are shown in Fig. 2 (g) and (h).  
 

 

  
 

Figure 2: . (a) Frequency response (b) Bifurcation diagram showing different solutions for region I-IV (c) Time history (d) Phase plane 

with Poincare/ points (Ω =3.9, 4600 ≤≤τ 5000, 249 points) for an array of five beams (N=5) with Q=300, Vac=0.707 V and Vdc=30 

V. In (a) and (c) blue, red and black indictes q3, q2,4, q1,2 amplitudes.  In (b) blue circles are periodic solutions and red dots are 

quasiperiodic solutions. (e) Frequency response (f) Bifurcation diagram showing different solutions for region I-IV (g) Time history 

(h) Poincare/ map (Ω =3.887, 8000 ≤≤τ 10000, 1238 points) for an array of twenty five beams (N=25)  with Q=300, Vac=0.9 V, 

Vdc=30 V. In (e) and (g) blue, red, green, black and yellow colors correspond to different qn for n=1,4,6,9,13 respectively. In (f) blue 

circles are periodic solutions and red dots are aperiodic solutions. Circle, asterisk represents forward and backward numerical sweeps. 

 

Conclusions 

 
This study provides a mathematical model to study the nonlinear dynamics of an array of N elastically coupled 

hybrid micro-cantilever beams with step-like heterogeneity of its width under the influence of gyroscopic and 

bending nonlinearity, nonlinear damping subjected to electrostatic excitation. The bifurcation structures of five 

and twenty five beam arrays reveals coexisting periodic solutions, quasiperiodic energy transfer between coupled 

beams and chaotic solutions which is novel application to enhance the sensing capability significantly. 
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