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Abstract – The ongoing effort towards understanding the 

physical principles underlying optomechanical forces is an 

active field of research that offers diverse applications in 

various fields of technology. The proposed physical model for 

the radiation pressure exerted on an achiral carbon nanotube 

(CNT), is formulated using the Maxwell stress tensor. Our 

model consists of a system of integral equations, describing the 

scattering pattern of an electromagnetic field (EM) for a single, 

finite-length, CNT in the THz frequency range. The obtained 

results from the proposed model, are presented for three cases: 

I) The optical force exerted on a CNT subjected to a surface 

EM-mode. II) The optical binding of two parallel non-identical 

CNT's III) The excitation of a radial breathing mode by the 

surface EM-mode in a CNT. Our current results can be 

implemented in the design of CNT-based ion and gas sensors, 

biosensors, field emission devices, and new types of 

metamaterials. 

 

Index terms – Carbon nanotubes; Optical forces; Stress tensor; 

Achiral carbon nanotubes; Integral equations;  

I. INTRODUCTION 

  The recent progress in research of carbon nanotubes (CNT), 

stimulated great activity in the design and production of new 

devices including commercial ones [1].CNT's show remarkable 

electronic, elastic, hydrodynamic and optical properties depending 

on their chirality. These properties can be optimally utilized, given 

an adequate theoretical framework. In the early stages of 

CNT research, it became clear that the description of their 

physical nature in terms of the relevant macroscopic 

parameters, is inconsistent (for example, permittivity). 

Consequently, fundamental model of their electrodynamical 

properties was established, with its foundations deeply 

rooted in the synthesis between quantum transport theory and 

classical electrodynamics, taking into account the effective 

two-side boundary conditions of the impedance type [2,3]. 

The scattering problem was formulated as a system of 

integral equations and was solved numerically [4-6]. 

Numerical solutions of scattering problems, are common 

techniques in the fields of antennas and microwave 

engineering.  

  One of the important new challenges of today's 

nanoscience, is investigating the coupling between nano-

mechanical and nano-optical effects. The control of optical 

forces and the manipulation they allow in nanometer-sized 

particles, attracted many researchers to conduct intensive 

studies on the physical mechanism that controls this 

optomechanical coupling. In his pioneering work, Ashkin, 

first demonstrated the possibility of exploiting light to 

optically manipulate and trap microscopic objects [7]. The 

investigation of the trapping capabilities of a single focused 

laser beam, lead to the realization of the so-called optical 

tweezers. One of the intriguing ways of "tweezing" particles, 

known as optical binding, was recently discovered (including 

binding with chiral particles [8]). 

  A well-known realization of optical binding occurs when 

light is scattered by a pair of interacting small particles. 

Assuming a quasi-static regime (dipole approximation [9]), 

the scattering pattern can be described by the polarizability 

tensors of each particle. An attempt to apply this model to 

CNTs is given in [10]. The validity of such a model is clearly 

limited, since it is subjected to some constraints imposed on 

the particle's dimensions being small compared to the wave 

length � of the exciting radiation. Nevertheless, in spite of 

the typical small values of CNT lengths, they do appear as 

unsubtle candidates for such an approximation. The main 

reason for this, lies in the existence of strongly retarded eigen 

modes in the THz frequency range, which were theoretically 

predicted in [4] and experimentally observed in [11,12].  

The present study is a manifestation of CNTs as promising 

candidates for different applications of optomechanical 

phenomena. Therefore, we will dedicate a considerable part 

of the talk to the theory of radiation pressure exerted on 

CNTs, produced by EM-fields (so called, “optical forces”).  

Calculation of the optical forces, is done by means of the 

Maxwell stress tensor and employing integral equations 

technique, taking into account the effect of CNT eigen 

modes. In addition to dealing with the computational aspects 

of the problem, we also address some fundamental issues. 

Different formulations are known to exist for the stress tensor 

[13] (e.g., Maxwell, Abraham, Minkowski, Einstein-Laub, 

Paierls), in which different model assumptions were 

introduced, leading to some non-identical expressions for the 

field momentum and the induced force.  Discussions of their 

correctness, have lasted for over a century [13]. From time to 

time these discussions seemed to converge to an overall 

conclusion but nevertheless some pending issues still remain.  

     

II. INTEGRAL EQUATIONS AND STRESS TENSOR  
 

  In this section we will formulate the system of integral 

equations for the structure shown in Fig. 1. The radius of the 

CNT is taken to be small compared with the optical forcing 

wavelength and its length is assumed arbitrary. The whole 

system is immersed in a linear medium with the common 

constitutive relations 	 = ��, � = μ� where � = �� + ���  
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and � = �� + ��� are the complex permittivity and 

permeability respectively of the surrounding medium. For the 

description of the linear electron dynamics with respect to the 

EM-field, the Boltzmann kinetic equation is solved in the 

framework of the momentum-independent relaxation time 

approximation. Thereafter, an analytical expression for 

electric current in the single CNT and its conductivity is 

derived. 

 

 
 
Fig.1. Configuration of the structure under consideration: A pair of 

parallel non-identical CNTs with corresponding radii ��,� , 

lengths ��,�  and conductivities ��,�  , placed at the distance � one 

with respect to another. 

 

   In contrast with [3-6], the system of integral equations is 

written in terms of the current densities on the CNT 

surfaces, without averaging over the azimuthal angle. The 

reason for this is, the strong angle asymmetry of the 

currents due to the strong mutual scattering for the case of 

interacting CNTs. The system of integral equations for the 

longitudinal current densities ������ ,evaluated on the 

CNT surface, can be written as: 

 

������ = 1��� �� � + k�� " �#�##$�,� ∙ 
 

& & �#'�#( ) *+,-�./�01 -
-�# − ��( - 34#35( + 67 ����8./�

/8./�
�:

7          �1� 

 

where ;, < = 1,2,   67  is the longitudinal component of the 

incident field and k = �√�� denotes the wave number of the 

impinging wave. The solution of (1) allows us to find the 

electromagnetic field in the whole space. The optical forces 

are next defined in terms of the Maxwell stress tensor [14], 

as 

 

  ?⃖A⃗ = ��⨂� + ��⨂� − �� ��� ∙  � + �� ∙  ��D⃡              �2� 

 

where D⃡ is the unit tensor. According to the boundary 

conditions imposed on the surface of the CNT, some 

components of the stress tensor are discontinuous (note that 

only such components support to the optical forces). The 

equation for the force can then be written as:  

 ⟨G⟩ = I ∆?⃖A⃗ KL3M                           (3) 

 

where ∆?⃖A⃗ = N?⃖A⃗OP − N?⃖A⃗/P represents the difference between 

the values of the stress tensor at the outside and inside the 

surface respectively and KL is a unit radial vector (plays the 

role of external unit normal). The angular brackets in (3) 

denote averaging over the period of the optical field. The 

integration in (3) is conducted over the surfaces of the CNTs. 

 

III. OPTICAL BINDING BETWEEN TWO CNT'S 

 

  In this section we will consider the optical binding in a 

system of two parallel arbitrary CNTs distant from each other 

at a distance of  �  as shown in Fig.2. 

 

 
 
Fig.2. The coordinate system that defines the system of integral 

equations (5) 

  

  We assume that both CNTs are infinitely long and calculate 

their eigenmodes, by accounting for the electromagnetic 

coupling between them. The homogeneous integral 

equations (1) in the limiting case ��,� → ∞ , have a non-

trivial solution in the form of travelling wave *+S  , where ℎ 

may be considered as an eigenvalue. The averaging of the 

current densities over the azimuthal direction is here invalid 

(in spite of the smallness of CNTs radius) because of the 

strong azimuthal asymmetry of the field in every CNT.  

Integration over the z axis is done using the identity: 

 

I UVWX�.Y�01 X
-�./�01 - *+S (35(Z/Z = ��: [7'\-]# − ]�( -)                  (4)  

 

where [7 is the MacDonald's function [18], ;, < = 1,2 and 

 -]# − ]�( -� + |5 − 5(|�, = -�# − ��( -�,   \� = ℎ� − k� 

 

The system of integral equations may then be written as  �#'4#)
= " �σ�\��� ��� � ∙ 

�$�,�
& `�a�4# , 4�( � ⋅ ���4�( �34�(

�:
7   �5�   

where     `�a�4� , 4�( � = ��: [7'\-]# − ]�( -) .A simple 

analytical solution of the system (5), can be achieved by 

implementing the Born approximation, widely used in the 

physics of optical binding [9]. Assuming that CNTs 
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�def = 1� g h��i�a                                             �9� 

interaction is rather small, we can take the zero 

approximation as  

k���4�� ≈ An���4�� ≈ 0p                                       (6) 

 

where An  is the zero-order approximation of the surface current 

density on tube (2) (qAnr = stu/t). This particular choice 

corresponds to the value \ ≈ \�7�, where \�7� represents the 

eigenvalue of the first CNT in the absence of the second one. 

Substituting the above ‘zero’ approximation into the right-hand 

part of Eq. (5) and integrating over the azimuthal angle, we 

obtain the current density induced on the second CNT due to 

its interaction with the first one. The analytical integration is 

done using the addition theorem for cylindrical functions (see 

appendix A in [15]).  The final result for the zero order Hertz 

potential Π7 is expressed below as  

 

Π�7��ρ�� = x…⏟{ + h̃ " [}�κl��}�κ���Z
}$/Z

�7�\��� ∙ 
 �[}�κρ���}�\���,   ρ� > �� [}�\����}�κρ��  , ρ� < ��            �7� 

where h̃ = −�k�����An��/����� and the radial position 

vector ]� is described at Fig.2. The symbol x…⏟{ in (7) 

denotes omitted terms, which are continuous at the surface 

of the second CNT and therefore do not contribute to the 

optical force. The optical force was calculated using (3), 

using the general approach considered before. Note that the 

optical binding force according to (7), is azimuthally 

dependent. 

  An additional mode for a pair of CNTs, can be shown to 

exist at the vicinity of the second tube. Its corresponding 

relations, can be easily determined by switching the indices 

  1 ↔ 2. 

 

IV. OPTICAL FORCE ON A SINGLE CNT 

 

   In this section we evaluate the radiation pressure which is 

produced by the surface eigenmode propagating over the 

CNT [3] for the case of lossless media for which �, �, ℎ, \ ∈ℛ and � is purely imaginary. Assuming that the Hertz vector 

associated with the imposed field is taken as a travelling 

wave in the z direction �� = Π�*�S �� ,we can write the field 

components as: E� = �jh/ε� ∂�Π�, E� = �ω�μ − h�/ε�Π� 

,H� = jω ∂�Π�.The normal and longitudinal components of 

the averaged stress tensor multiplied by a unit normal vector, 

provide the local pressure (P) exerted on the CNT surface 

 

� = �((|6� |�\2�                                         �8� 

                                                                

where |6� | is the magnitude of the total longitudinal field at 

the surface of the CNT, �(( = 2��/��R7k�Sh� is the 

imaginary part of the surface conductivity, �� represents the 

Fermi-velocity of electrons in the CNT, � =  �/� is the 

wave impedance and R7 = �ℏ/*� is the quantum resistance 

expressed in terms of electron charge and Planck's constant.       

The shear stress (in contrast to the pressure term P),is 

stipulated by the attenuation of the eigenmode and 

disappears in the lossless limiting case. Numerical 

estimations of the typical parameters of conductive CNTs in 

the THz frequency range, give |P|/4��|6� |� ≈ 0,35, which 

seems to exceed the corresponding values for different types 

of nanostructures (e.g., dielectric nano-spheres with or 

without the appearance of dielectric background [16]). The 

considered force is determined by the field discontinuities 

prevailing at the CNT boundary. These discontinuities may 

be also considered as a proper limit of a gradient of a non-

homogeneous field. Thus, from a physical point of view, the 

considered force may be interpreted as an analog of the 

gradient force [17]. 

V. THE EXCITATION OF RADIAL BREATHING MODE BY THE 

SURFACE EM-WAVE 

   In order to demonstrate some possible application of the 

developed theory, we consider the excitation of a CNT radial 

breathing mode (RBM), by the surface electromagnetic mode. 

For simplicity, we assume that the CNT is empty and employ 

a classical continuum approach to model CNT elasticity [17]. 

The frequency of the RBM mode can be written as  

 

where i�a represents the area mass density, � is the tubes 

radius and h�� denotes the elastic stiffness coefficient in the 

Voigt notation [17]. The radial frustration of the CNT, 

corresponds to the forced oscillations of an harmonic oscillator 

satisfying the following equation  

 

 

 

 

 

where P is the magnitude of the (radial) pressure defined by eq 

(8) and ¥ denotes the radial CNT displacement. Following 

[17], we choose i�a ≈ 10/¦kg/m�,h�� ≈ 352N/m, which for 

a CNT with radius of 1.0nm, renders a frequency �def ≈0.6THz. This value is found to be small compared with typical 

frequencies (10-100THz) of surface EM-modes [12]. 

Therefore, an efficient excitation of RBM in CNT, is possible 

by using for example periodic chains of electromagnetic 

pulses. In this case, the optical force defined in eq. (8), 

becomes a periodic function in time. If the inversed value of 

this period is small compared with the frequency of surface 

EM-mode and is approximately equal to the RBM-frequency 

given by eq. (9), we obtain a resonant regime of RBM 

excitations. 

   A more complicated scenario, occurs in the case of a CNT 

filled with a compressible (inviscid) liquid. The radial 

frustration of the CNT is then coupled with the compressible 

pressure wave [20], which propagates in the liquid along the 

tube in the form of a traveling wave. The presence of such 

3�¥3©� + �def� ¥ = Pi�a                                    �10� 
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waves in a liquid-filled CNT, may be further enhanced by 

means of optical forces too.  

VI. CONCLUSION AND OUTLOOK 

   A fundamental theory of optical forces acting on a system 

of two interacting CNTs, is presented. The system of forces 

exerted, on a single CNT is obtained as a degenerate case 

when the distance between the two tubes is very large. The 

analysis is based on employing the Maxwell stress tensor, 

which is calculated via integral equations technique.  The 

underlying theory is free of some of the prevailing limitations 

of conventional methods for evaluating CNT’s optical 

forces. The qualitative behavior of optical forces in CNTs, is 

defined to a considerable degree by the existence of strongly 

retarded surface modes, which are absent in other types of 

nanostructures. Our analysis shows that typical values of 

optical forces acting on a CNT, are generally larger or at least 

comparable with those exerted on other types of 

nanostructures. For this reason, we strongly believe that 

CNTs are promising candidates for diverse applications in 

nano-mechanics (e, g., optical traps or optical tweezers). Our 

analysis may also lead to a new research activity in the field 

of optical forces –namely the effect of interacting eigen-

modes of CNTs. For future activity, we intend to examine the 

additional effects connected with chirality and non-

homogeneity. Taking these effects into account may shed 

some new light on the way that eigen-modes are produced.  

Considering those new interference effects between nearby 

carbon (chiral or achiral nanotubes, make CNTs also a 

promising tool for controlling their surface elastic vibrational 

modes, liquid flows (discharge) inside them, as well as the 

induced fluid mixing in the surrounding liquid.  
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