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1. Introduction 

 
Smart structural activation via piezoelectric patches or 

layers for identification and control of vibrations has been 
successful in a variety of applications (Sunar and Rao 1999, 
et al. 2009) that span both large scale energy harvesting 
(Betts et al. 2012, Roccia et al. 2020, Mishra et al. 2020) 
and microscale mass sensing (Kumar et al. 2011) or 
nanoscale imaging where the individual micro-cantilever 
sensors employed for atomic force microscopy (Wolf and 
Gottlieb 2002, Roeser et al. 2016) are fundamental elements 
of parallel scanning probe microscopy (Minne et al. 1999, 
Rangelow et al. 2007). We note that the accuracy of 
microscale imaging as well as control of cantilever 
vibration crucially depends on the quality of the 
mathematical model governing system response. 

A successful implementation of mathematical models 
thus requires simultaneous solution of both elastodynamic 
and electrostatic boundary-value problems (Maugin 1985) 
which are typically solved by elaborate numerical methods 
(Tzou and Tzeng 1990). An alternative asymptotic singular 
perturbation approach for problems with a weak 
nonlinearity (Pai et al. 1998) has been verified experi-
mentally for cantilever dynamics with both geometric 
nonlinearities (Zaretsky and da Silva 1994, Anderson et al. 
1996, Tabaddor 2000, Zaitsev et al. 2012) and piezoelectric 
material nonlinearities (Usher and Sim 2005, Kumar et al. 
2011). However, to our knowledge, the treatment of 
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viscoelastic damping (Poh et al. 1996) has been treated only 
numerically (Providakis et al. 2008, Kambali et al. 2019). 

In this paper we formulate a nonlinear initial-boundary-
value problem for a piezoelectric cantilever sensor 
operating near its primary resonance in a vacuum environ-
ment which consistently incorporates quadratic and cubic 
contributions for both geometric and piezoelectric material 
nonlinearities. We apply the asymptotic multiple-scales 
method to yield the slowly-varying evolution equations near 
primary resonance culminating with the system frequency 
response and employ a model-based estimation procedure 
to deduce the magnitude of nonlinear damping from 
controlled experiments in vacuum. We discuss the effect of 
nonlinear damping on sensor applications for scanning 
probe microscopy. 

 
 

2. Problem formulation 
 
The system examined, shown schematically in Fig. 1 is 

a cantilever beam covered by a single or two piezoelectric 
layers along its entire length. We extend the model 
derivation for a nonlinear piezoelectric cantilever proposed 
by Wolf and Gottlieb (2001, 2002) to incorporate the 
contribution of viscoelastic damping (Mora and Gottlieb 
2017, Kambali et al. 2019) to yield the following field 
equation 

 
ρAvtt = λv − 𝐻02 𝑣 𝑣xx+vxxx − 𝐻03 𝑣xx− 𝐻04 𝑣xx − 𝑄 (1)

 
Where ρA is the cantilever longitudinal mass density, 

Hmn are constant coefficients deduced from the electric 
enthalpy density per unit length for the symmetric or 

 
 
 

The influence of nonlinear damping on the response of a piezoelectric 
cantilever sensor in a symmetric or asymmetric configuration 

 
Giuseppe Habib 1a, Emanuel Fainshtein 2b, Kai-Dietrich Wolf 3a and Oded Gottlieb∗2a 

 
1 Department of Applied Mechanics, Budapest University of Technology and Economics, Budapest, Hungary 

2 Department of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa, Israel 
3 Institute for Security Systems, University of Wuppertal, Velbert, Germany 

 
 

(Received May 13, 2022, Revised June 8, 2022, Accepted June 9, 2022) 

Abstract.  We investigate the influence of nonlinear viscoelastic damping on the response of a cantilever sensor covered by 
piezoelectric layers in a symmetric or asymmetric configuration. We formulate an initial-boundary-value problem which 
consistently incorporates both geometric and material nonlinearities including the effect of viscoelastic damping which cannot 
be ignored for micro- and nano-mechanical sensor operation in a vacuum environment. We employ an asymptotic multiple-
scales methodology to yield the system nonlinear frequency response near its primary resonance and employ a model-based 
estimation procedure to deduce the system damping backone curve from controlled experiments in vacuum. We discuss the 
effect of nonlinear damping on sensor applications for scanning probe microscopy. 
 
Keywords:  nonlinear viscoelastic damping; piezoelectric cantilever sensor; symmetric/asymmetric configuration 

 

239



 
Giuseppe Habib, Emanuel Fainshtein, Kai-Dietrich Wolf and Oded Gottlieb 

Fig. 1 Cantilever with piezoelectric layers: 
(a) asymmetric; (b) symmetric configuration

 
 

asymmetric configurations (Wolf and Gottlieb 2001) and λ 
is the Lagrange multiplier required for implementation of 
the cantilever inextensibility condition to cubic order (Da 
Silva and Glynn 1978). 

 

λ = ρA 𝑢tt 𝑑𝑥 − 𝐻02𝑣 𝑣xxx,    𝑢 = − 12 𝑣 dx (2)

 
The viscoelastic force (Kambali et al. 2019) is 
 Q = Cv + DI 𝑣txxx 1+v + vtx𝑣xx  (3)
 
Where C is an equivalent viscous damping coefficient, 

D is a Kelvin-Voigt material damping parameter and I is the 
cantilever cross-section moment of inertia. 

We rescale the field equation Eq. (1) via the cantilever 
length (L) and elastic time scale [T = L2(ρA/H02)0.5] to yield 
the following nonlinear equation of motion 

 𝑤ττ + 𝑄 + 𝑅 + 𝑆  = 0 (4)
 
Where 𝑄 is the viscoelastic force which includes both 

linear and cubic components, 𝑅  is the restoring force 
which includes both linear and geometrically nonlinear 
cubic components and 𝑆 includes the contributions of both 
quadratic and cubic piezoelectric material components 
corresponding to the asymmetric and symmetric 
configurations respectively 

 𝑄 = μ 𝑤 + μ 𝑤τsss 1+w + wτs𝑤ss  𝑅 = 𝑤sss + w 𝑤 𝑤ss + 𝑤2 𝑑dτ 𝑤 ds dξ𝑆 = 𝛾32 𝑤ss + γ42 𝑤ss  

(5)

 
Note that nondimensional field equation is governed by 

four nondimensional parameters µ1 = (CT/ρA), µ3 = (D/ET), 
γ32 = (H03/LH02) and γ42 = (H04/L2H02) where γ32 vanishes 
for the symmetric configuration. In anticipation of the 
weakly nonlinear asymptotic analysis we consider here only 
the linear contributions for the boundary conditions (Wolf 
and Gottlieb 2001) or w(0,τ) = ws(0,τ) = 0, wsss(1,τ) = 0 and 
wss(1,τ) = -γ12∆ϕ where γ12 = (LH11/H02) and ∆ϕ = Ucos(Ωτ). 
Thus, the nondimensional initial-boundary-value problem is 
governed by seven parameters (µ1, µ3, γ12, γ32, γ42, U, Ω). 

 
 

3. Asymptotic analysis 
 
We employ an asymptotic multiple-scales solution 

procedure applied directly to the field equation and its 

corresponding boundary conditions (Nayfeh 1981). Thus, 
the displacement is expanded into a power series 

 𝑤 𝑠, T , T , T = 𝜀 𝑤n=1 𝑠, T , T , T  (6)

 
Where Tn are the time scales (Tn = εnτ). 
We substitute the assumed displacement in Eq. (6) and 

its derivatives into the equation of motion Eq. (4) and 
equate like coefficients of ε to yield the following sets of 
three PDEs and their corresponding boundary conditions 

 𝐷 𝑤 +w1ssss=0,w 0 = w1s 0 = w1ss 1 = w1sss 1 = 0. 𝐷 𝑤 +w2ssss = −2D 𝐷 𝑤 − γ32 𝑤1ss ss,  w 0 = w2s 0 = w2ss 1 = w2sss 1 = 0. 𝐷 𝑤 + w3ssss = −2D 𝐷 𝑤 − 𝐷 +2D 𝐷 𝑤 𝑤    − 2γ32 𝑤1ss𝑤2ss ss + γ42 𝑤1ss ss + 𝑅-w1ssss + S ,𝑤 0 = w3s 0 = w3sss 1 = 0, w3ss 1 = −γ12𝑈 𝑇 . 
(7)

 
Where Dn = ∂/∂Tn and we have defined sufficiently 

small viscous damping (𝜇 = ε �̄� ) and small boundary 
amplitude excitation (∆𝑓 = ε 𝑈 ) so that they appear in the 
third order set. 

Solution of the first order set in Eq. (7) yields a standard 
linear solution for a Euler-Bernoulli beam. However, in 
order to prevent growth without bound for the second order 
set in Eq. (7) we impose a solvability condition (D1A1 = 0) 
which enables solution of the non-secular particular 
solution of the second set (see details in Wolf and Gottlieb 
2001). Substitution of the solutions w1 and the non-secular 
w2 from the first and second order sets respectively into the 
third order set in Eq. (7) requires an additional solvability 
condition to prevent solution growth without bound 
(Nayfeh 1981). This condition results in a slowly varying 
(T2 = ε2τ) complex amplitude evolution equation (Wolf and 
Gottlieb 2001) which in turn can be transformed to its 
autonomous form [A1(T2) = a1(T2)exp(i(σT2-θ1(T2))] where 
we have defined a small detuning (σ) from primary 
resonance [ε2σ = (Ω – ω1)]. 

 𝐷 𝑎 = − �̄�2 + 3μ8 𝑎 𝑎 − 𝛼12𝛾12𝑈2ω sin 𝜃𝑎 𝐷 𝜃 = 𝜎 − 𝛾𝜔 𝑎 𝑎 − 𝛼12𝛾12𝑈2ω cos 𝜃  
(8)

 
Where the effective cubic stiffness coefficient γC is a 

function of both the quadratic γ32 and cubic γ42 piezoelectric 
coefficients 

 𝛾 = 38 𝛼 − 12 𝛼 𝜔 − 14 𝛼32𝛾32 + 98 𝛼42𝛾42  (9)
 
And αij are integral coefficients which are a function of 

the primary resonance mode shape (see details in Wolf and 
Gottlieb 2001). Note that the contribution of the quadratic 
piezoelectric coefficient, (γ32) is always softening, whereas 
the cubic coefficient (γ42) can be hardening or softening 
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(Nayfeh and Mook 1979). 
The amplitude frequency response can readily be 

obtained from Eq. (8) by setting the slowly varying 
derivatives to zero so that the amplitude is solved for the 
detuning 

 𝜎 = 𝛾𝜔 𝑎 12 νγ𝜔 𝑎 − �̄� + 38 𝜇 𝜔 𝑎  (10)

 
Where v = U /Umax  and 𝛾 = α12𝛾12𝑈max . We note 

that the amplitude frequency response in Eq. (10) reduces 
identically to the response without viscoelastic damping for 
both symmetric and asymmetric configurations (Wolf and 
Gottlieb 2001, 2002). 

 
 

4. Model-based parameter estimation 
 
We apply the asymptotic analysis to results obtained 

from a controlled set of experiments in a vacuum chamber 
to determine the frequency response amplitude from the 
slowly varying evolution formulation in Eq. (10). Fig. 2 
depicts the layout and an enlargement and an enlargement 
of the piezo-cantilever (details in Fainshtein 2005). 

An example set of measured amplitude frequency 
response functions (details in Habib 2008) are portrayed in 
Fig. 3 where we have varied the periodic input voltage (2.5-
30.5 V). 

We deduce and depict in Fig. 4 the damping backbone 
curve from the controlled experiments from both free 
vibration decay (Gottlieb and Habib 2012, Habib et al. 

 
 

Fig. 2 The experiment layout and piezoelectric cantilever 
(Fainshtein 2005) 

 
 

Fig. 3 The amplitude frequency response in vacuum 
obtained for several input voltages (2.5-30.5 Volts)

2017) and forced vibration due to periodic input excitation 
(Gottlieb et al. 1996). Thus, the equivalent damping ratio ς 
can be obtained (Gottlieb and Habib 2012) from the slowly 
varying amplitude equation Eq. (8) 

 𝜍 = 12 𝜇 + 38 𝜇 𝜔 𝐴  (11)

 
We note that the linear damping coefficient is 

proportional to the intersection of the damping ratio with 
the zero amplitude (µ1 = 2ς) whereas the nonlinear 
viscoelastic damping coefficient is proportional to the ratio 
between the equivalent damping and the amplitude squared 
[µ3 = 4(2ς – µ1)/3(ω1A)2]. 

 
 

5. Application to scanning probe microscopy 
 
We extend the model-based estimation procedure to 

investigate scanning probe microscopy applications. For 
example, consider the case of magnetic force microscopy 
(Zuger and Rugar 1994, Kazakova et al. 2017, Vokoun et 
al. 2022) where a micro-cantilever with a magnetic tip is 
used to visualize magnetic fields from the surface of a 
ferromagnetic sample. This scanning probe microscopy 
methodology has been extended to detect changes in 
electron spin via magnetic resonance force microscopy 
(Rugar et al. 2004, Berman et al. 2006). The latter has 
revealed has revealed a complex internal resonance 
bifurcation structure (Hacker and Gottlieb 2017, 2020) and 
an expected increase of sensitivity in electron spin detection 
with matching frequencies of cantilever and spin (Berman 
and Tsifrinovich 2022). 

We thus augment our piezoelectric cantilever 
experiment with a tip magnet and repeat the experiments in 
vacuum used for model-based estimation of the viscoelastic 
damping. Fig. 5. We note that the fundamental softening 
frequency response has remained softening. However, due 
to the magnetic interaction the resonance frequencies 
decreased by 15% (from the experiments with 2.5V the 
frequency of ~230 Hz in Fig. 3 to ~195 Hz in Fig. 5). 

The corresponding backbone cure in Fig. 6 of the 
experiments depicted in Fig. 5 demonstrate that the 
magnitude of the linear damping coefficient obtained from 

 
 

Fig. 4 The damping backbone curve corresponding to 
data in Fig.2 for a cantilever in vacuum
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Fig. 5 The amplitude frequency response in vacuum of 
a cantilever with magnetic tip interaction obtained 
for several input voltages (2.5-30.5 Volts)

 
 

Fig. 6 The damping backbone curve corresponding to 
data in Fig. 5 for a cantilever in vacuum with 
magnetic tip interaction

 
 

the intersection of the backbone with the zero amplitude 
increased slightly (ς~0.023) in comparison with the 
magnitude of linear damping without the magnetic 
interaction. However, the cubic viscoelastic coefficient did 
not change significantly. 

 
 

6. Conclusions 
 
A consistent nonlinear model for the dynamics of a 

piezoelectric cantilever with viscoelastic damping was 
derived. This model accounts for finite deformation and 
nonlinear behavior of both piezoelectric layers and 
viscoelastic material. For the geometry of a micro cantilever 
probe typical for scanning probe microscopy, the amplitude 
response to voltage excitation and its dependence on 
nonlinear damping has been determined by the asymptotic 
multiple-scales method near the dynamical system primary 
resonance. Model-based estimation of parameters form 
experiments of a vibrating cantilever in vacuum reveal a 
distinct softening behavior governed by the nonlinear 
properties of the piezoelectric material and the significance 
of non-negligible nonlinear damping of the constrained 
viscoelastic material. 
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