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Abstract – We investigate the nonlinear mechanical 

motion of a chiral nano-particle suspended in stationary fluid 

induced by a linearly polarized electromagnetic field with a 

rotating polarization axis.  Our analysis makes use of the time-

averaged optical torque, which yields a set of three nonlinear 

equations for the angular velocities of the 3D rotating chiral 

particle in terms of its time-dependent Euler angles. The effect 

of electromagnetic chirality dramatically changes the 

qualitative behavior of the optical torque. It is also shown that 

chirality manifests itself in the non-invariance of the particle 

optical torque with respect to the direction of rotation of light 

polarization. In order to preserve the invariant behavior, a 

chiral duality condition must be enforced. Some relevant 

experimental observations and few practical applications of 

predicted effect are also mentioned and discussed.  

 

Index terms – Optical torque; Chirality; Euler 

angles; Rotating linear polarization.  

I. INTRODUCTION 

Controlling the optical torque (OT) acting on trapped 

nanoparticles (known as optical tweezers) is essential for 

different applications in nano-optics, biophysics and 

biotechnology [1], among them the rotation of living cells 

[2,3], implementation of motor proteins [2,3] and 

microscopic machines [4-6] have been demonstrated. The 

rotation of nanoparticles may be induced via scattering or 

absorbance of light, and one of the principles underlying the 

application and control of the OT acting on nanoparticles, is 

the use of wave-plates that rotate the direction of a linear 

polarized light impinging on an asymmetric nanorod 

suspended in a nanofluid [6].  Such apparatus produces a 

nonlinear mechanical motion and enables its effective 

control, for example by means of the “flip-back” effect [6]. 

In angular optical tweezers, the most commonly employed 

trapping particle thus far is a quartz cylinder. Crystalline 

quartz has an anisotropic electric susceptibility, such that the 

extraordinary axis of the crystal is more easily polarized than 

the ordinary axes. The cylinder is designed to have its 

extraordinary axis perpendicular to its cylindrical axis and 

one of its ends chemically functionalized for attachment to a 

biological molecule of interest. Once the cylinder is trapped, 

its cylindrical axis orients along the direction of light 

propagation as a result of shape anisotropy i.e. experience an 

optical torque [7].   

 

 

 

 

 

 

 

 

 
 

 

 

Fig.1. Deplore response of a metaparticle to an impinging EM 

excitation. 

 

 The advent of anisotropic and chiral materials opens a novel 

way for implementing OT [8-14] techniques. An object is 

defined to be chiral, if it is impossible to transform it onto its 

mirror image by rotation or translation [15]. Such asymmetry 

is the reason for the different response of an object with 

respect to opposite helicity of the incident electromagnetic 

wave. In Fig.1 the deplore response of a metaparticle, so 

called twisted- �, is presented. An x-directed 

electromagnetic (EM) excitation induces an x-directed 

electric dipole moment p
,��
�  on the straight section of the 

particle, which corresponds to the polarizability tensor 

component α


�� and the current associated with this dipole 

moment, I ,flows in the loop section from current continuity. 

However, given the 90° twist of the loop, this current now 

gives rise to the x-directed magnetic dipole moment p�,��
�  

which corresponds to α�

��  .Note that if the angle of the loop 

twist were not exactly 90°, then the induced magnetic 

moment would be tilted, which would introduce an off-axis 

contributions to the response. Therefore, chirality is a dual 

condition. It means that elements embedded in a host 

medium with a given chirality, can be used to manifest -at 

the nanoscale-the transition between linear to non-linear 

regimes and vice versa. Such phenomena can be applied in 

nontraditional applications [16]. The recent progress in 

nanotechnologies have made it possible to create new types 
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(a) 

(b) 

of chiral materials (e.g., carbon nanotubes [16] and 

plasmonic nanohelixes [17]) with tailored properties for 

specific optomechanical applications. Among the promising 

nanotechnological applications, we can highlight modern 

activities such as torque sensing [18], using, for example, 

photo actuators and motors [17].  

The remarkable properties of OT are due to the 

synthesis of different concepts. The main part of theoretical 

models of OT with chiral objects and their experimental 

implementations [8-14] are based on the circular polarized 

waves.  

 
 

 

 

 

 

 

 

 

 

 

Fig.2. Rotating chiral Gold spheroid suspended in stationary fluid 

excited by the plane wave � � E�e� !"z#  . X,Y,Z is Cartesian lab 

system, X′, Y′, Z′ Cartesian rotating system and ϕ, ψ, θ Euler 

angles; N is the nodal line. The permittivity of the spheroid  ε �
(,112.41 1 20.55i)ε5,Permittivity of liquid ε6 � 1.78ε5 

(water).The dimensions of the spheroid are: a� � 2500nm, a; �
a< � 250nm and the  wavelength and amplitude of the impinging 

plane wave  are  1300nm and 10=V/m , respectively. The relative 

permeability between the spheroid and its surroundings is taken as 

unity. 

 

The presented study opens the path towards 

controlling the manner in which angular momentum is 

transformed to a chiral object suspended in a stationary fluid. 

The theory of such process is the subject of this paper, and 

may be considered as a generalization of the model [6] (OT 

of the non-chiral dielectric particle by the rotated linearly 

polarized light). The main result of our paper is the 

transformation of electromagnetic chirality to the special 

asymmetry of OT acting on a nanospheroid. 

 

II. MODEL 

We consider a nanospheroid suspended in 

stationary fluid. Under real experimental conditions [6], the 

moment of inertia @ of the object is extremely small and as a 

result inertia term can be ignored with respect to 

electromagnetic, and viscous forcing. We assume that all 

axes lengths of the spheroid are small compared with the 

exciting wavelength. Under these assumptions, the Rayleigh 

approximation is implemented for the description of light 

scattering [22] [23] [24]. The dipolar description of a small 

chiral object, such as a chiral nanoparticle or a chiral 

molecule, corresponds to a coupled system of induced 

electric and magnetic dipole moments. The electromagnetic 

behavior of a linear time-invariant (LTI) medium, can 

generally be expressed by the Maxwell equations with the 

following constitutive relations  

 

A � BC� 1 DCE                                �1�

F � GC � 1 HIE                               �2�
 

where BC, HI, DC denote the permittivity, permeability, and 

magnetic-to-electric coupling dyadic tensors respectively. 

One particular example for which the tensors JC, KI, LC and MC 

reduce to the diagonal tensors J@̿, K@̿, L@̿ and M@,I is known as a 

bi-isotropic chiral medium. Within the Rayleigh 

approximation, a nanospheroid can be modeled by the 

system of electric and magnetic dipoles placed in its 

geometric center. A 3D physical model for the rotational 

dynamics of a tri-axial nanospheroid with principal axes  

(OP, OQ, OR� (Fig.2), is considered.  
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig.3. Domain of existence of equilibrium is given between the red 

and blue lines with the corresponding values of the nondimensional 

parameter  Ω and real (a) and imaginary (b) parts of the chiral 

parameter T � TU(Re(√XUYU) 1 Im�√XUYU�i�, ,1 Z TU Z 1 . 
 

The nanospheroid’s permittivity is denoted by ε and is 

suspended in a fluid of permittivity ε6 and impedance 

Ζ\.Relative permittivity and permeability of the fluid are 

defined as XU � X\ X5   ⁄  and YU � Y\ Y5⁄ _ 1 (the subscript 

0 represents the free space value). The particle is illuminated 

by a time- harmonic electromagnetic wave (EM) oscillating 

at the frequency ω (assuming time- dependence e� !" ).  Our 

model is generally formulated for a nanoellipsoid and 

degenerates to a nanospheroid by setting a< � a; for the sake 

of simplification. A  rotating frame of reference is attached to 

the ellipsoid mass center (body-fixed frame of reference) and 

the Eulerian angles (θ, ϕ, ψ) correspond to pitch, yaw and 

roll motions respectively.  

The EM-field is linearly polarized with a rotating 

axis of polarization. Since the angle of polarization axis 

changes very slowly on the EM-field time scale, we can 

consider the time average of the torque ` over one optical 

cycle and apply the adiabatic approximation. The induced 

electric and magnetic dipole moments (a and m) can be 

accordingly expressed as [23] 

 

a � bCcc� 1 dIecE              �3a� 

 μ6e � dIce� 1 dIeeE          �3b� 

 

yielding the total torque acting on the nanospheroid. We will 

consider the case of Pasteur medium [14]. Furthermore, the 

X ε6 
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(a) 

(b) 

(c) 

(d) 

polarizability dyadics  dIcc, dIce, dIecdIee with dIce �
,dIec are given by 

 

bhhi � jiX\k�X , X\�kliY 1 m1 − linY\o − liT�Y\X\o      (4p)  
 bqqi = jY\k(Y − Y\)kliX + m1 − linX\o − liT�Y\X\o    (4r) 

 bhqi = sTjiY\X\tY\X\                                                              (4c) 

where κ is chiral parameter, j = x, y, z , Γi = 4ya�a<a; m3∆{n⁄  

and 

       ∆{= mL{μ + m1 − L{nμ6nmL{ε + m1 − L{nε6n − L{�κ�μ6ε6   (4d) 

  

The values L{ are the elements of diagonal depolarization 

tensor given by relations  L{ = 0.5a�a<a; } 1 kms + a{�nR(s)o⁄ ds                    (4e)~
5  

L� + L< + L; = 1.and  R(s) = �(s + a��)ms + a<�n(s + a;�)with  

The depolarization coefficients expressed in terms of elliptic 

integrals [19]. The values X, Y, T (and therefore the elements 

of polarizability dyadic) are complex values.   

 

III.  THE DYNAMICAL SYSTEM 

 

In the rotating frame of reference (X′, Y′, Z′) the Newtonian 

equation of motion takes the form � = 〈`〉 − A    (5) 

where � = @��� + �� × (@�� )  ≈ 0                                                (6a) 

 〈`〉 = 0.5kRema� ×  �� ∗ + μ6e� × E� ∗no                          (6b) − k5	 (12y)⁄ Imm(1 ε6⁄ )a�∗ × a� + μ6e� ∗ × e�n 

 A = � ��                                                                              (6�) 

 

are the angular momentum, averaged EM torque and drag 

terms, respectively. The angular velocity of the particle in the 

rotating frame of reference ��  is a function of three Eulerian 

angles. For a chiral spheroid the nondimensional dynamical 

system, expressed in the Eulerian space, is given by 

 

�������
�  = �� sin� � − ℬ� cos �  − Ωℬ�ℬ	 − (�� + �) cos θ  �           (7) 

 

where γ = E�� b�
;   (bR� Ζ\ )⁄ ,  ℬ�, ℬ�, ℬ	  are functions 

presented in appendix A and τ = αt represents the 

normalized time. The proportionality factor α defined by (8),which is held constant through all simulations, is a 

functions of the EM amplitude, polarizabilities in two 

orthogonal directions and the angular drag coefficient R 

 α = E�2Re(b

� − b

;) (4R)�                      (8) 

 

with a dimension of 1/sec, E� is a value of electric field and R 

is the angular drag coefficient in two perpendicular axes to  

a�  (R; = R< = R). The non-dimensional angular frequency Ω is defined as   � = 2��/b                                         (9) 

where ��  denotes the dimensional angular frequency of the 

half wave plate. Note that the dynamical system (7) was 

obtained by approximating the second term in (6b) as zero 

(Appendix B). In addition, the non-dimensional 

transformation � = � −  �  is applied to the Eulerian angle  �  which leads to the autonomous system (7) in terms of �. 

The index   in (7) means a time derivative. The 

corresponding equilibrium points of the dynamical system 

are found by equating the left-hand side of (7)  to zero and 

setting � = 0 (� ∈ ℝ) resulting at  

 

 

 

 

 

 

 

 

 

 

 

 
 

 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig.4 Time series of the dynamical system (7)  for chiral parameter 

characterized by Re(T) = 0.1447 , Im(T) = 1.596 and  initial 

conditions �5 = 0.73, �5 = 1.57, �5 = 0.1 the value of 

proportionality parameter is α = 82.41  In addition the value of the 

two nondimensional parameters are given by  £�mb¤¤¥, b¦¤¥n =  −0.048  and £�mb¤¤¥, b¦¦¥n = 1.341 ∙ 10�¨ (Appendix A). 

(a),(b) correspond to �� = 42 rad sec⁄ , � = 1.02 and (c),(d) 

correspond to �� = − 42rad sec⁄ , � = −1.02. Dashed red line 

represents the nondimensional polarization angle Ωτ. 

 ª−ℬ�  − � = 0            ℬ	 − � �«¬ � = 0             (10) 
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(a) 

(b) 

(c) 

(d) 

The system (10) renders the functions in (7) in terms of  �. 

The values of the equilibrium angles ��,�
­® ¯
may be found 

from equation (10) as  

 

  ��h°±²³ = 0.5¬s´��µ(£� − �) (1 + 0.5£�)⁄ ¶ (11)  
                   ��h°±²³ = y 2⁄ − 0.5¬s´��µ(£� − �) (1 + 0.5£�)⁄ ¶ (12)    

         

where η�, η� two nondimensional parameters determined by 

polarizability tensor components. ( £� = £�mb

{, b�
{n  and £� = £�mb

{, b��{n.  

 IV. OPTICAL TORQUE OF A SPHEROIDAL PARTICLE 

 

In the limit of a non-chiral medium α
� = −α�
 = 0, the 

system (7) reduces to the corresponding system obtained in 

[6]. The scenario of OT for the achiral case considered in [6], 

is controlled by the critical value of � for which |�¹º| = 1. 

Values of |�| > 1, correspond to the so-called non-linear 

motion, where the angle of the rod changes nonlinearly with 

time. This critical value separates two qualitatively different 

regimes of dynamics. For  |�| < 1 we get a phase-locked 

motion, for which the rod’s motion exactly follows the 

rotation of the electric field polarization. It is also important 

to note, that a change in the sign of Ω generally leads to the 

inversion of rod rotation while keeping its dynamics (Fig.5). 

 We have performed here several simulations in 

different domains in the �, T space (Fig.3), defined by the 

relations £� − � = ±(1 + 0.5£�) which correspond to the 

boundary for which the equilibrium (10) holds.  It is worth 

mentioning that the value Ω depends on the chiral parameter 

which is usually a complex number. We have also considered 

a gold nanorod for two partial cases of real and imaginary 

chiral parameter (see Fig.3 a, b). The values of the chirality 

parameters are rather high. However, similar values of 

constitutive parameters have been reported in some other 

structures, such as DNA-Au, or chiral AU-colloids [21]. 

Future results can be also related to these types of artificial 

chiral structures. It is important to note, that the chosen 

chirality parameters satisfy the condition of |T| ≪ À¦(´) (n 

is a refractive index). This inequality guaranties that the rod 

is produced from a passive material [21]. Finally, the reader 

is recalled that for the effective implementation of OT, we 

need to have similar tensor values of the polarizabilities (i.e., 

different values for the longitudinal and transverse 

components) [6]. Such a property holds for a spheroid with 

an isotropic conductivity due to its non-symmetric 

configuration. 

Our numerical simulations demonstrate (Fig.3) that 

for the chiral case one can readily separate out the phase-

locked and the nonlinear regimes (with respect to Fig.3 b,d 

the set of coordinates (ÁÂ, ÃÂ, ÄÅ) correspond to the 

conventional set (Á, Ã, Ä) via  normalization by a�, i.e.,  XÆ =X a�⁄ , YÆ = Y/a�  etc.). In a similar manner to the non-chiral 

case, the domain of the phase-locked motion, exists between 

the red and the blue lines depicted Fig. 3. However, in the 

chiral case this domain is not invariant with respect to the 

sign of the chirality.  

As a result, the chirality of the rod dramatically 

changes the qualitative behavior of OT. For example, for 

positive direction of rotation (Fig. 4c) the phase of the rod 

motion (blue line) follows exactly the rotation of the field 

polarization (red dashed line). Such dynamics corresponds to 

the monochromatic oscillations of the Cartesian coordinates 

(Fig 4b). By changing the direction of rotation (while 

keeping the value of its frequency), we obtain another 

scenario (Fig 4a). The rod decelerates in its rotation from that 

of the field polarization. Thereafter, it eventually stops and 

then starts to move in the opposite direction (this effect is 

named “flip-back” in [6]). After some time, the rod regains 

its initial direction of motion. Thereby, the dynamics of the 

rod corresponds a periodic chain of “flip-backs” strokes. 

However, in contrast with [6], the OT dynamics in 

the chiral case, depends on the direction of rotation of the 

EM-field polarization axis. The OT dynamics is also 

different for a right-hand chirality and a left-hand chirality 

and depends on the chirality value. At the Fig. 5 it is shown 

the dynamics of the structure with the opposite sign of 

chirality value. One can see again the phase-locked and the 

nonlinear regimes with the same dynamics subject to the 

direction of rotation. However, every of these regimes exist 

for the opposite directions of rotation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig.5 Time series of the dynamical system (7) from  initial 

conditions �5 = 0.73, �5 = 1.57, �5 = 0.1 and parameters η� =0.048, £� = 1.341 ∙ 10�¨, b = 82.419, Re(T) − 0.1447, Im(T) =−1.0596 (a),(b) correspond to �� = 42 rad sec⁄ , Ω = 1.02 and (c),(d) correspond to �� = − 42rad sec⁄ , � = −1.02. 
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(a) 

(b) 

(c) 

(d) 

Fig. 6 shows the dynamics of achiral spheroid. In this case, 

we see identical non-linear dynamics for both directions of 

rotation. In contrast with the non-chiral case [6], such 

dynamics with the same angular velocity is reachable only in 

one direction of rotation (positive value �). Changing the 

direction of � leads to a breakdown of the nonlinear regime 

and a transition to the phase-locked regime.  Due to the 

special chiral asymmetry, the phase-locked dynamics is 

reachable for a dual system (i.e., changing sign of chirality). 

 

V. CONCLUSION AND OUTLOOK 

In this paper we have predicted the novel 

mechanism of OT of small spheroidal particles made from a 

chiral material. The OT is considered as a linearly polarized 

EM-field with rotating polarization axis.  
  

The dynamical equations and the conditions of stationary 

state are formulated and numerically simulated. The results 

of our analysis demonstrate the qualitative influence of the 

chirality on the OT. 
 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Fig.6 Time series of the dynamical system (7) from  initial 

conditions �5 = 0.73, �5 = 1.57, �5 = 0.1 and parameters £� =£� = 0, b = 82.419, Re(T) = Im(T) = 0  (a),(b) correspond to Ω� = 42 rad sec⁄ , � = 1.02 and (c),(d) correspond to Ω� =− 42rad sec⁄ , � = −1.02. 

 

In a similar manner to the non-chiral case [6], we 

find that two regimes of OT dynamics exist: phase-locked 

motion and non-linear motion. This effect may be found 

useful in different applications such as: i) measurements of 

chiral parameters; ii) optical enantio-sorting of chiral objects 

iii) design of optical driven micro-machines; etc.   
A similar effect also exists in other types of helix-

like structures, such as chiral carbon nanotubes, plasmonic 

nanohelixes, DNA-Au, or chiral AU-colloids. Such objects 

may be described by the dipole approximation, but the model 

of chiral dielectric is invalid for the calculation of their 

polarizability. Among the many remarkable properties of 

chiral objects, we mention here the internal EM-resonance 

(“antenna resonance”), which seems to be an effective   

manifestation tool also in optomechanics. This is certainly 

one of the promising directions for future research activity. 

APPENDIX A 

For the functions ℬ�, ℬ�, ℬ	 in equation (7) we have 

  ℬ� = Ç�(£��«¬� − £�¬s´�) + Ç�(2¬s´� − £��«¬�)  (È1)   ℬ� = ¬s´�¬s´� ( ℬ� + � �«¬ �)                              (È2)                            ℬ	 = Ç�(ÇÉ£� + Ç	£�) − Ç�(2ÇÉ + Ç	£�)                   (A3) 

 

where £� = ÊÉ + Ê�, £� = Ê� − Ê	.The coefficients Ê®, u =1,2,3,4  are  functions of dyadic polarizabilities, elements of 

which are given by 

 Ê� = 2Ì¤(bqqÍ)/kÎ\�Ì¤(bhhÏ − bhhÍ)o                 (A4) 

 Ê� = 2Ì¤(bqhÍ)/µÎ\Ì¤(bhhÏ − bhhÍ)¶                     (A5)  
 Ê	 = 2Ì¤(bqqÏ)/µÎ\�Ì¤(bhhÏ − bhhÍ)¶                    (A6)    
 ÊÉ = 2Ì¤(bqhÏ)/µÎ\Ì¤(bhhÏ − bhhÍ)¶                   (A7) 

 

where Ζ6 is the impedance of the surrounding achiral fluid. 

The values σ , s = 1,2,3,4 are the functions of Eulerian 

angles and are given by 

 Ç� = �«¬�¬s´� +  ¬s´� �«¬��«¬�               (A8) 

 Ç� = �«¬��«¬� −  ¬s´��«¬�¬s´�              (A9) 

 

 Ç	 = ¬s´�¬s´� − �«¬� �«¬��«¬�              (A10)   

 ÇÉ = ¬s´��«¬� + �«¬� �«¬�¬s´�             (A11) 

APPENDIX B 

Let the magnitude of the incident EM field defined as 

  E� = |�| , H� = |E|                    (B1) 

 

in addition, we define the following non-dimensional 

variables �Ó = �/E� , EÓ = E/H� , aÓ = a/mX\a	E�n 

  eÓ = e/maÏ	H�n ,  k5 = axk6, 〈Ô〉5 = 〈`〉/mX\aÏ	E��n     (B2) 

 

where a� is half of the length of the major axis of the 

spheroid. The nondimensional form of   (6r) reads 
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 〈Ô〉5 = 0.5µRe(aÓ ×  �5∗ + eÓ ×  E5∗)¶  − k5	 (12y)⁄ Imm(a5∗ × aÓ) + (e5∗ × eÓ)n 

(B3)  

for a nonmagnetic achiral particle, the relation (B3) 

degenerates to 

 

 〈Ô〉5 = 0.5 ÕRe(aÓ × �5∗) + k5	6π Imm(aÓ × a5∗ )n× (B4) 

 

in the Rayleigh regime the radiative correction to the 

polarizability is given by [24] 

 bhhi = b�hhi/µ1 − sb�hhØ\	 (6y)⁄ ¶                      (B5) 

where α�

{ stands for the polarizability at the electrostatic 

limit with j = x, y, z. In terms of the non-dimensional 

polarizability α

{5  we have 

 bhhi5 = b�hhi5 /µ1 − sb�hh5 k5	 (6y)⁄ ¶                         (B6) 

 

where  α�hhi5 = b�hhi (X\aÏ	)⁄  is the nondimensional static 

polarizability. Furthermore 

 

bhhi5 = b�hhi5
1 − sb�hhi5 Ø5	 (6y)⁄  1 + sb�hhi5 ∗ k5	 (6y)⁄1 + sb�hhi5 ∗ k5	 (6y)⁄    (B7) 

 

and after neglecting sixth degree terms 

 b

{5 ≈ b�

{5 + iÙb�

{5 Ù� k5	 (6π)⁄                                (B8) 

 

The averaged torque for the nonmagnetic case is then 

together with (B8) becomes 

  〈Ô〉5{ = 0.5kRe(aÓ × �5∗){o = 0.5Rembhhi5 (�Ó ×  �5∗)Ún   (B9) 

  〈Ô〉5{ = 0.5 ÛRe ÜÝb�hhi5 + sÙb�hhi5 Ù� k5	 (6π)⁄   Þ (�Ó ×  �5∗)Úßà (B10) 

  〈Ô〉5{ = 0.5kRe(aÓ × �5∗)Úo + k5	 (12y)⁄ Im(aÓ × a5∗ ){ (B11) 

 

hence, adding the second term in (B4) is equivalent to 

replacing b�hhi  by   bhhi  and computing  〈Ô〉5i only by the 

first cross product. In the Rayleigh regime we take bhhi ≈b�hhi  . 

REFERENCES 

 
[1]   Y. Geng, J. Tan, Y. Cao, Y. Zhao, Z. Liu1, W. Ding, “Giant and 

Tunable Optical Torque for Micro-Motors by Increased Force 

Arm and Resonantly Enhanced Force”, Scientific Reports, 

2018. 

[2]  M.Gudipati,J.D'Souza, J.Dharmadhikari, A.Dharmadhikari, 

B.Rao,D.Mathur.Optically-Controllable,”Micron-Sized  

Motor Based on Live Cells”, Optics Express13, 1555–1560, 

2005.  

[3]  M.G. L. Van Den Heuvel,C.Dekker,”Motor Proteins at Work 

for Nanotechnology” Science,317, 333–336, 2007.  

[4]   S. Kuhn, A. Kosloff, B.A. Stickler, F. Patolsky, K. Hornberger, 

M. Arndt, J. Millen, “Full Rotational Control of Levitated 

Silicon Nanorods”, Optica, 356–360,2017.  

[5]   S.H. Simpson, S. Hanna,” Holographic Optical Trapping of 

Microrods and Nanowires” Journal of the Optical Society of 

America A, Optics Image Science and Vision,27, 1255–

1264,2010.  

[6] W.A. Shelton, Bonin K. D., Walker, T. G., “Nonlinear Motion 

of Optically Torqued Nanorods”, Phys.Rev. E,71,8, 2005. 

[7]   P.H. Jones, O.M. Marago, G.Volpe, “Optical Tweezers-

Principles and Applications”, Cambridge University Press,2015  

[8]   M. Khan, A. K. Sood, F. L. Deepak, C. N. R. Rao, “Nanorotors 

using Asymmetric Inorganic Nanorods in an Optical Trap”, 

Nanotechnology 17, S287–S290, 2006.  

[9]   K. Ding, J. Ng, L. Zhou, C. T. Chan, “Realization of Optical 

Pulling Forces Using Chirality”, Phys.Rev A,89,063825 ,2014.  

[10]  D.Hakobyan, E. Brasselet,” Left-Handed Optical Radiation 

Torque”, Nature Photonics, 610–614,142 ,2014. 

[11] Wang, S. B., Chan, C. T.,” Lateral optical force on chiral 

particles near a surface”, Nature Communication. 5, 4307 ,2014. 

[12] A. Rahimzadegan, M. Fruhnert, R. Alaee, I. Fernandez Corbaton, 

and C. Rockstuhl,” Optical force and torque on dipolar dual chiral 

particles”, Phys.Rev B, 94, 125123 ,2016. 

[13] M.N. Vesperinas,” Optical Torque on Small Bi Isotropic 

Particles”, Vol.40, No.13, Optics Letters, 2015. 

[14] C. Genet,” Chiral Light−Chiral Matter Interactions: An Optical 

Force Perspective”, ACS Photonics, 9, 2, 319–332 Publication 

Date: January 26, 2022 

[15] C. Caloz, A. Sihvola,” Electromagnetic Chirality”,IEEE Antennas 

& Propagation Magazine ,1045-9243,2020.  

[16] J. Mun, M. Kim, Y. Yang, T. Badloe, J. Ni, Y. Chen, C.W. Qiu, 

J. Rho,” Electromagnetic Chirality: From Fundamentals to 

Nontraditional Chiroptical Phenomena”, Light: Science & 

Applications ,2020. 

[17] X. Zhang, Z. Yu, C. Wang, D. Zarrouk, J.W. T Seo, J.C. Cheng, 

D. Buchan, K. Takei, Y. Zhao, J.W. Ager, J. Zhang, M. Hettick, 

M.C. Hersam, A.P. Pisano, R.S.  

Fearing, A. Javey, “Photo actuators and Motors Based On 

Carbon Nanotubes with Selective Chirality Distributions”, 

Nature Communications,2013. 

[18] W. Wu, M. Pauly,” Chiral plasmonic nanostructures: recent    

advances in their synthesis and applications”, Mater.Adv, 3,186, 

2022. 

[19] Y. Wang, J. Xu, Y. Wang, H. Chen,” Emerging Chirality in 

Nanoscience”, Chem. Soc. Rev.,42, 2930, 2013. 

[20] A. Lakhtakia, “Polarizability Dyadic of Small Chiral 

Ellipsoids”, Chemical Physics Letters, Vol.174, 

No.6,1990.  

[21] A. Canaguier-Durand, C. Genet, “Chiral Route to Pulling Optical 

Forces and Left-Handed Optical Torques”, Phys. Rev. A,92, 

043823,2015. 
[22] C.F Bohren, D.R Huffman, “Absorption and Scattering of Light 

by Small Particles”, Wiley, 1983. 

[23] M.Schaferling,” Chiral Nanophotonics-Chiral Optical 

properties of plasmonic systems”, Springer,2017 

[24] A.H Sihvola, “Electromagnetic modeling of Bi-isotropic Media, 

Progress in Electromagnetics research”, PIER 9, 45-86,1994.  

[25]  S. Albaladejo, R. G´omez-Medina, L. S. Froufe-P´erez, H. 

Marinchio, R. Carminati, J. F. Torrado, G. Armelles, A. Garc´ıa-

Mart´ın, J.J. S´aenz, “Radiative corrections to the polarizability 

tensor of an electrically small anisotropic dielectric particle”, 

Optics Express, Vol. 18, No. 4,2010. 


