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APERIODIC WHIRLING OF NONLINEAR STRINGS:
CHAOTIC DYNAMICS OR MODELLING UNCERTAINTY

Oded Gottlieb

In this study we investigate the onset and evolution of aperiodic whirling of a
nonlinear string and compare the characteristics of chaotic whirling obtained in a de-
terministic model to system response including model uncertainty. The uncertainty is
incorporated in the model by introducing a weak stochastic perturbation to the gen-
eralized forces describing dissipation and external excitation. Results demonstrating
modified threshold values for the onset of aperiodic whirling may further bridge the
documented discrepancy between approximate theoretical predictions and experifien-
tal results.

1 Introduction

Whirling or out-of-plane response of parametrically excited taut strings and slack elas-
tic cables has been the subject of renewed interest recently. While both theoretical
and experimental analysis demonstrate existence of complex periodic and aperiodic
responses, only qualitative agreement has been found between theoretical predictions
and experimental observations (cf. Perkins, 1992; O'Reilly & Holmes, 1992; Benedet-
tini & Rega, 1994; Nayfeh et al.,1995). The theoretical investigation of string and cable
dynamics typically includes approximate analysis of the (slow) amplitude equations
derived by perturbation techniques(cf. Miles 1984) complemented by their numeri-
cal simulation (cf. Johnson & Bajaj,1989) and consists mainly of fundamental mode
dominance. This enables reduction of the space-time boundary value problem into a
finite differential state space where nonlinear interactions can be analyzed by classical
(cf. Nayfeh & Mook, 1979) and modern (cf. Guckenheimer & Holmes, 1983) tech-
niques. The stability analysis results in an approximate bifurcation structure of the
string system which can then be complemented by numerical analysis of the complete
space-time dynamics (cf. Rubin & Gottlieb, 1996) and ultimately by experiments (cf.
Molteno & Tufillaro, 1990; Lee & Perkins, 1994; Nayfeh et al., 1995). The discrepancy
between theoretical and measured results appear in the threshold values répresenting
the onset of periodic and aperiodic whirling and in the crisis representing whirling
collapse and return to periodic motion (Bajaj & Johnson, 1994).

Steady state periodic whirling is characterized by a periodic angular momentum
which remains of a single sign whereas aperiodic whirling (quasiperiodic, chaotic)
can be observed by an amplitude modulated angular momentum which can alternate
sign corresponding to a change in the whirl direction. Furthermore, an unpredictable
change in the amplitude modulated whirl direction can be observed when the whirling
response of a deterministic model becomes chaotic. The thresholds for periodic and
quasiperiodic whirling are explained via asymptotic theory by local bifurcation analy-
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sis of the constructed weakly nonlinear slowly varying amplitude evolution equations

(Miles, 1984). The onset of periodic whirling is realized by the emergence of nonplanar
fixed points in the evolution equations and the onset of quasiperiodic whirling is de-
scribed by the further emergence of limit cycles in evolution space via the mechanism
of a Hopf bifurcation. Furthermore, existence of chaotic motion was demonstrated nu-
merically for both evolution equations and amplitude modulated solutions (Johnson &
Bajaj, 1989) and explained theoretically via global bifurcations of the limiting slowly
varying evolution system (O’Reily & Holmes, 1992; O’Reily,1993).

Some of the possible explanations offered for the discrepancy between theory, sim-
ulation and experiment consist of the arbitrary selection of periodic boundary exci-
tation under the fundamental mode assumption, lack of inclusion of higher modes
and in the modelling of internal (material damping) external (aeroelastic drag) and
boundary dissipation mechanisms. In the reported studies the only dissipation mech-
anism incorporated was that of assumed (or measured) linear modal damping. The
linear damping values were typically obtained by logarithmic decrement analysis of
. free vibration decay thdt were found to be generally very small. We note that while
calibration of damping coefficients is typically obtained via small amplitude free vi-
bration, the whirling amplitudes can be of much larger magnitude particularly near
the crisis describing the return bifurcation from whirling to periodic motion. Thus
modeling of large amplitude nonlinear dissipation mechanisms is essential for investi-
gation of the reported aperiodic phenomena. Recently, the discrepancy reported by
O'Reilly and Holmes (1992) was verified by a numerical study (Rubin and Gottlieb,
1996) where the simulations of the complete string problem indicate that the forcing
amplitude threshold is about five times smaller than that observed in experiments.
In order to raise the threshold, additional (linear) equivalent damping and a material
nonlinearity were included. However, while the reported experimental periodic onset
values were obtained, both model modifications did not reveal aperiodic response. In
an additional study (Gottlieb, 1996), quadratic aeroelastic damping (Hsu, 1975) and
a Goulomb law of friction and its continuous function approximation (Feeny & Moon,
1989) were incorporated to the fundamental string model. We note that although
these nonlinear damping forms did not appear in the ’pluck’ test calibration of the
experiment, their inclusion revealed the appearance of both quasiperiodic and chaotic
whirling. ™

An additional explanation for the reported discrepancy can be that of a model-
ing uncertainty which governs the unpredictable nature of the aperiodic taut string
response. This uncertainty can be realized as an apparent random fluctuation of var-
ious system parameters which contain a wide spectrum of frequencies. Consequently,
a nonlinear model incorporating deterministic or stochastic parameter (time varying)
changes is required to investigate the possible wide banded spectral outcome describing
both random' or chaotic responses. This can be achieved by various means including
‘the incorporation of a nonstationary process describing system excitation (cf. Neal & -
Nayfeh, 1990) or by modification of the harmonic filed or boundary excitation by a
weak random perturbation (cf. Roberts, 1985; Pascual & Vazquez, 1985). We note
that investigation of nonlinear stochastic dynamical systems exhibiting multiple co-
existing solutions, reveal that incorporation of noise will enhance complexity of the
response (Frey & Simiu, 1993) and change the system bifurcation structure. Further-
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more, it has been shown that chaotic dynamics can be annihilated by various forms of
nonstationarity (Moslehy & Evan-Iwanowsky, 1991} and that the topological structure
(eg. circular or fractal Poincar map corresponding to quasiperioidc or chaotic dynam-
ics) of an aperiodic attractor in a nonlinear deterministic system without noise can be
distorted beyond recognition after incorporation of noise. Consequently, selection of
a modelling uncertainty should preserve the measured amplitude modulated structure
" if available from experiment,. o - ' -
In this study we utilize the Lagrangian formulation to derive the fundamental
transverse and longitudinal modes and include linear modal damping and quadratic
aeroelastic drag as generalized forces. We incorporate uncertainty in the dissipation
and forcing model via weak stochastic perturbations generated by an added white
Gaussian noise. The excitation considered is ((g) so that the primary resonance,
damping and nonlinearity balance each other. Results demonstrating the modified
threshold values for whirling onset are obtained and compared to those based on a clas-
sical modal damping assumption. The apparent amplitude modulated responge due
to stochastic variability describing modelling uncertainty is analyzed and compared to
that obtained via the deterministic dynamical system exhibiting chaotic whirling.

2 Equations of Motion for the Fundamental Mode

The equations of motion for the taut string can be obtained from the Lagrangian
density describing the difference between kinetic and strain energies for a geometrically
nonlinear configuration:

L
L(s,t) = /0 [g (u? +0f +wf) - %4(51* — 1% ds ’ (1)

where s is the arclength coordinate at time ¢; u(s,t), v(s,t) and w(s,?) denote the
longitudinal, vertical and horizontal displacements respectively; a*(s,t) is the stretch
and p, I, A are the mass density per unit length, Young’s modulus and cross-sectional
area respectively.

The position vector r*(s,t) incorporates the prestrech of the string in the longitudi-
nal direction where a is a constant (a > 1) determining the magnitude of prestretching
as 7* = vey + weq + (u+ as)ez where a = 14+ Tp/EA and Tp is the initial tension of
the string.

The boundary conditions considered in this work include harmonic excitation of
the ends in the vertical direction: u(0,t) = u(L,t) = w(0,t) = w(L,t) =0, v(0,?) =
By cos Qt, v(L,t) = Br cos {t. '

In order to obtain a fundamental mode representation from the Lagrangian, the
following assumptions are required: i) small displacements and strains enabling sim-
plification of the strain energy in (1) iz & Taylor series expansion, ii} an assumed
spatial mode representation incorporating the time dependent boundary conditions of
(5). We first recall the comprehensive analysis of Narasimha (1968) demonstrating
that the influence of the longitudinal response is u = O(v?, w?) (Nayfeh et al, 1995).
Consequently, assuming a simple harmonic form for (v(s), w(s)) results in a spatially
doubled harmonic representation for u(s). :
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The stretch of the string a*(s,¢) is defined in terms of the magnitude of the tangent
vector: a* = [8r*/ds|. Thus, We propose the following assumed mode form for the
displacement vector:

“ . TS . TS . 27s
- [Al(t) sin — + f(s,t)] e1+ [Ag(t) sin -—E] e + [As(t) sin —— +asles (2)

where A4;(i = 1,2,3) are time dependent amplitudes and f(s,t) corresponds to the
contribution of boundary excitation in the vertical direction.

We note that the spatially doubled harmonic representation for the longitudinal
displacement (u(s)) has been verified numerically (Rubin & Gottlieb, 1996). However,
as noted by O'Reilly & Holmes (1992), there are no guidelines for the section of f(s,1)
in (2) other than its compliance with the boundary conditions resulting in a large
number of candidate functions. This arbitrariness in problem formulation requires
validation of results with an independent experiment. We select the following simple
assumed form for f(s,f) and demonstrate that the resulting whirling solutions are
similar to those obtained in an equivalent numerical experiment:

. ' f(s,t) = [Bo + (B — By) (%)} sin 2t | - (3)

Substitution of (2) and (3) into (1) and integration over the domain including terms
to O(A7, A;B?) (where i = 1,2,3;j = 0, L) results in the following equations for the
fundamental mode (Gottlieb, 1996): : -

(5 ) re () o[ e an e (Brase (3) ] »

AN _ [ 2e2r() )
Ay )T 0
o (s (52" [ () (3 + ) = 3 (41 + 414 ) ] =

where %11’2 = (Br, -+ —By) sin{€%) and the linear natural frequencies for the transverse
and longitudinal modes are wo = (1 — 1/a)%5w;, w; = 7(BA/p)*5/L,

Recall that the fundamental mode for the longitudinal direction was assumed to
have a double spatial harmonic due to u = O(v%, w?). This result stems from the
assumption that the natural frequency of the longitudinal mode (w;) is much larger
than that of the transverse mode (wg) which in turn implies that the longitudinal modes
are not excited. Consequently, the longitudinal inertia and small terms to O(A43%) in
(4) can be neglected resulting in two coupled nonlinear hardening Duffing equations
for A; and Ay. Note that as the streich constant (a) is very close to unity, the limiting
valued for the nonlinear stiffness coefficient in the reduced system (Gottlieb, 1996) is
shown to be identical to that derived by other multiple scale analysis (Miles, 1984;
Nayfeh et al, 1995). N '

We introduce damping to the fundamental Hamiltonian modal subsystem (4) as
a dissipation function incorporating a linear modal and quadratic damping (Gottlieb,



APERIODIC WHIRLING OF NONLINEAR STRINGS 261

1996) and incorporate the model uncertainty via an additive perturbation to the fore-
ing function (F'(f)) and allow the damping coefficients to vary. '

D(Az) = % [clAi + eo A ‘Az H , ci=¢+o (5)

where the noise selected is from a Gaussian controlled by the standard deviation
(o< 1). ' ' -

3 The Influence of Variable Nonlinear Damping
and Forcing

The fundamental influence of the nonlinear damping mechanisms can be demonstrated
for the case of small amplitude response in the slowly varying evolution equations
derived from the fundamental equations of motion. After rescaling [A = (Rpwhere
¢ = (e~ 1L and 7 = Qt] and applying a generalized averaging procedure we obtain
the following: '

o Ry = 5[~ (m+E2R) R — 1R R3sin2(¢y — ¢1) — prcos ]
Ry =3 [—maRl + %Rl (R% + RE) — %RlR% sin’(¢g — ¢1) + psin ¢1] (6)
Ry =& |- (v1+52Ry) Ry + JRIRysin2(¢g — 6]
Rods =5 [—aRs+ 3Ry (BRI + R3) — § RERasin® (42 — ¢1))]

where the small parameter is €°® = B¢/Q, « is a detuning [er = 1 — (wp/Q)?], p is
the forcing [eu = 2(Br + Bg)/7¢]. Furthermore (6) reduces (¢ = 0) to the classical
dynamical system derived from the reduced system for a weakly nonlinear string with
linear modal damping (Gottlieb, 1996). Following Miles (1984), solution of the equi-
librium system obtained from (6) will yield the thresholds and bifurcation curves for
periodic and quasiperiodic whirling corresponding to pitchfork and Hopf bifurcations
. respectively. Furthermore, whirling motion is bounded by a saddle-node bifurcation
governing the crisis mechanism controlling return to planar system response (R = 0).

The analytically obtained bifurcation structure does not address the discrepancies
reported between theory and experiment{O’Reilly and Holmes, 1992; Perkins, 1992;
Nayfeh et al, 1995) where the chaotic whirling response occurs for finite excitation
(in our notation epsilon g = 0.636 for parameters in O’Reily and Holmes, 1992).
This can be observed in the stability diagram (Figure la) obtained from numerical
simulation of the system (4) where the damping mechanism (5) is linear (¢c; = 0).
Similar results have been shown in the numerical investigation of the string via the
theory of Cosserat(Rubin and Gottlieb, 1996).

Following the Hopf bifurcation results obtained from analysis of (6) we simulate
the dynamical system (4, 5) without noise to yield a quasiperiodic phase plane (z =
A; + 0.5BsinQf,y = As) and Poincare’ map (Figures 2a,b). However, inclusion of
weak noise in the damping mechanism reveals that the quasiperiodic response for
the system without noise has evolved fo the apparent form of a chaotic attractor
with weak noise (Figure.3a,b). Furthermore, while results from numerical simulation
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Figure 1: Stability diagram: a) Linear damping model without noise (top). b) non-
. linear damping model with and without weak noise (bottom). ..
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of (4, 5) without noise reveal that the modified damping mechanism (5) reproduces
the stability threshold of periodic whirling (solid line in Figure 1b), inclusion of the
nonstationary variations widen the domain of stability (dashed line in Figure 1b).

The influence of variable nonlinear damping consists of modification of the fun-
damental threshold of periodic whirling and reveals and enables the appearance of
documented aperiodic solutions in the form of a noisy chaotic attractor.

In closing we note again that nonlinear damping mechanisms have not been iden-
tified in the reported literature of aperiodic whirling and only linear damping was
extracted from free vibration ’pluck’ tests. Furthermore, the reports of noisy additive
components are typically not considered as they fall into the region of instrumenta-
tion sensitivity. However, due to the large amplitude response of periodic and aperi-
odic whirl (particularly near crisis) and the difficulties in identification of dissipation
mechanisms during nonlinear forced vibration, the influence of damping and forcing
parameter variability should be considered. We note that without the inclusion of
an added model uncertainty in the form of noise the threshold of aperiodic yhirling
revealed only quasiperiodic response whereas inclusion of noise enhanced the bifurca-
tion structure resulting in the perturbation of the quasiperioidc solution to an apparent
‘noisy’ chaotic attractor. Future research incorporating stochastic bifurcation analy-
sis (Ariaratnam, 1994) from both a dynamical systems approach (Arnold,1988) or
identification of a change in the probability distribution of the response (Horsthemke

& Lefever, 1984} may also yield further insight and result in alternative bifurcation
thresholds.
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