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ABSTRACT 

The behavior of smart localized structural elements for nonlinear vibration control of a taut string is investigated in this 
manuscript. A nonlinear lumped mass dynamical system is derived and analyzed numerically to reveal conditions for 
possible forced vibration reduction. The strategy employed consists of an open loop excitation approach enabled via 
actuation of a smart element by a slight harmonic change of its length. Results of a bifurcation analysis reveal possible 
vibration reduction via two distinct mechanisms: i) parametric excitation that enables reduction of external forcing and 
ii) energy transfer from the directly excited vertical response to both rotation and horizontal motions.  
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1. INTRODUCTION 
 
Smart structural activation via piezoelectric patches or layers for identification and control of undesired vibrations has 
been successfully implemented in several applications1,2. Examples include flexible elements in longitudinal3 and 
bending vibrations4. Recently, several examples have been introduced in the domain of microelectromechanical 
systems where applications typically include thin film coatings of piezoelectric layers5. Examples are microcantilevers 
for scanning probe microscopy6,7 and in applications to surgery8. Control of vibrations using smart structures with 
optimally placed distributed elements9 has been implemented for vibration absorption10 using both concepts of linear11 
and nonlinear12,13 control. 
The nonlinear dynamic response of slack cables and taut strings is of great interest in a variety of technical problems 
including vibrations of offshore mooring and towing systems, transmission line conductors, and connecting micro and 
nanowires. While these examples differ in the form of environmental field loads, they incorporate similar boundary 
conditions and internal mechanical forces. Furthermore, under various time dependent environmental conditions, these 
systems exhibit finite amplitude response that includes periodic (ultrasubharmonics, mode locking) and aperiodic 
(quasiperiodic and chaotic dynamics) behavior14-17. Of particular interest are the internal resonance dynamics that 
transfer energy from an excited mode to its (coupled) counterpart in both cables and strings18-20. 
Control of cable vibrations has been implemented by passive dampers placed near the supports or active boundary 
control using linear and nonlinear control schemes21,22. However, instabilities can occur due to coupling of the 
mechanical nonlinearities and the control feedback23. Indeed, planar harmonic boundary actuation of a taut string in 
transverse24 or both transverse and longitudinal directions25 induces aperiodic, out-of-plane whirling near primary 
resonance. We note that passive vibration absorption26 and open loop resonance cancellation control27,28 have been 
successful in reducing motion induced by based excitation of a pendulum. 
To date, control of cables and strings has not been done by smart elements in the field. Thus we are motivated to 
investigate the application of control via smart localized elements in the span of a taut string system that is subject to 
forced vibration in the vertical plane. We implement an open loop strategy in the form of a small periodic perturbation 
of the smart element length and investigate possible reduction of system response. 
This paper includes derivation of a planar lumped mass taut string dynamical system which incorporates a localized 
piezoelectric sleeve that can change its length (periodically) to the aim of controlling externally excited vibrations in 
the vertical plane. Analysis of the system without the element actuation yields finite amplitude dynamics including 
coexisting solutions (jump phenomena), ultra- subharmonics, internal resonances, quasiperiodic and chaotic response. 
We focus here on a fundamental period-three response. Inclusion of the element actuation is considered as a periodic 
perturbation of the element length with frequency of vibration that can coincide or is incommensurate with that of the 
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forcing frequency. Results from a numerical bifurcation analysis are discussed to reveal possible vibration reduction via 
both parametric excitation and energy transfer from the directly excited vertical response to both rotation and horizontal 
motions. 
 

2. DYNAMICAL SYSTEM 
 
The taut string is described here by a planar lumped mass model connected via two pretensioned springs (with stiffness 
k and initial length 0� ) to a vibrating frame of (width 2b) that oscillates harmonically (V(t)). The model incorporates a 
small localized element which consists of a rigid body piezoelectric sleeve (of length 2a) located at midspan. The mass 
of the system (m) describes both the string and the localized sleeve. The length of the element (2a) can vary in a 
controlled manner and includes a constant part and a time varying part ))t(Aaa( 0 += . Thus, the system mass remains 
constant whereas the element moment of inertia (I(t)) is a quadratic function of time. The generalized coordinates 
selected are the translation ))t(Y),t(X(  from the reference midspan position at rest and the angular rotation of the 

element ))t((θ . 

We construct the dynamical system utilizing a Lagrangian approach. The Lagrangian (L) is assembled from the 
following kinetic (KE) and potential (PE) energies. 
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where the time dependent inertia and stretch are: 
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and the localized time dependent element length and input excitation of the frame are: 
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In this research we assume simple linear damping so that the generalized damping forces can be obtained from a 
Rayleigh dissipation function. 
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The equations of motion are obtained by substitution of the system energies (1) and the dissipation function (4) into 
Lagrange’s equations )3,2,1j( = . 
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We scale the system coordinates and displacements (X,Y,U,V) by half the span (b) and scale time by the square root of 
the ratio between the string stiffness (k) and the system mass (m). 
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Consequently, after rearrangement of terms, the equations of motion (5) are obtained in nondimensional form to yield 
the model dynamical system. 
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where the prime denotes τdd /  and the nondimensional stretch is: 
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and the nondimensional element length (u(τ)) and frame acceleration (v"(τ)) are: 
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The nondimensional system parameters are: 
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We note that the dynamical system (7) is not singular as the stretch )( 12∆  and time dependent element length (u) are 

always positive as α>β. Furthermore, as the element length is smaller than the frame width, )ba(1 0 <<α , it can be 

shown that the initial string length parameter is small, )1( αµ −≤ , as the initial taut spring length is smaller than the 

frame half width )( 00 ab −≤� . 
The dynamical system (7) can be reduced to the following single degree of freedom equation for symmetric motion 
without rotation )0x( =θ= . 
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This limiting equation, expanded to third order assuming )(yO = ))(u~(O τ , is a hardening Duffing equation subject to 

combined external ))("v( τ  and parametric excitation ))(u~( τ 29. 
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We note that this limiting equation without parametric excitation )0)((
~

=τu  reduces (for )1( αµ −= ) to the strongly 
nonlinear Duffing equation (e.g. without linear stiffness) investigated by Ueda30,31 to yield a rich ultrasubharmonic 
bifurcation structure including several types of chaotic strange attractors. 
 
In order to evaluate the coupling between the generalized coordinates we expand the system (7) to cubic order: 
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The truncated system reveals both quadratic and cubic coordinate coupling and consists of a nonlinear coupled system 
with possible internal resonances that is subject to single and multiple frequency excitation32. 
 

3. NATURAL FREQUENCIES AND INTERNAL RESONANCES 
 
The natural frequencies of the dynamical system (7) are easily observed from the truncation (13). 
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The smallest (and fundamental) frequency is yω  and we distinguish between three possible cases: i) θω<ω<ω xy ,  

ii) θω=ω<ω xy , iii) xy ω<ω<ω θ . 

 
The conditions for existence for each case are a function of the nondimensional element length that is fixed (α) and the 
taut spring initial length (µ) where α−<µ 1 . Equating xω  and θω  from (14) yields the following relationships 

between µ and α. 
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Consequently, the existence of each case is as follows: 
 
 i) *;xy µ<µω<ω<ω θ  

 ii) *; µµωωω θ ==< xy  

 iii) )1(*;xy α−<µ<µω<ω<ω θ  

 
We note that the upper bound, )1( α−=µ , yields 0y =ω=ω θ , which consists of the strongly coupled system with no 

linear stiffness in y or θ. Furthermore, the parameter space defined by case (iii) is much smaller than that of case (i). 
The natural frequencies in (14) reveal the possible existence of internal resonances described by kji nm ω=ω=ω�  

where n,m,�  are integers. We limit our analysis to 1=�  and mn > , and obtain the following conditions for internal 
resonances. 
 i) yxxy nm: ω=ω=ωω<ω<ω θθ  
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Examples of internal resonances from (16) are (1:m:n) = {(1:2:3), (1:2:4), (1:2:5), (1:3:4), (1:3:5), (1:4:5)} where the 
resulting elements length 3/1≤α . 
 
 ii) yxxy n: ω=ω=ωω=ω<ω θθ  
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This case admits all possible (1:n) internal resonances. However, an element length of 3/1≤α  precludes (1:2). 
 
 iii) yxxy nm: ω=ω=ωω<ω<ω θθ  
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Examples of internal resonances from (18) are (1:m:n) = {(1:2:4), (1:2:5), (1:2:6), (1:3:6)}. However, only (1:2:6) 
yields an element length of 3/1=α  whereas the other combinations result in larger lengths. 
 

4. FORCED VIBRATION WITHOUT LOCALIZED ELEMENT ACTUATION 
 
We focus in this paper on two fundamental cases that satisfy the conditions for internal resonance described in the 
previous section: i) small (nondimensional) element size ( 12.0=α ), and ii) a finite size element corresponding to a 
third of the span ( 3/1=α ). We present some reference results for the uncontrolled (e.g. without element 
actuation: 0=β ). The candidate cases selected were investigated for small (nondimensional) exciting amplitudes 

( 1.001.0 −=γ ), and small damping determined from a critical damping ratio describing underdamped conditions 

( 01.0001.0 −=ζ ). The forcing frequency selected was close to the horizontal natural frequency xω ( 5.11 =Ω ).   
Attention is focused on two conditions of internal resonance of type (ii). Figure 1 depicts subharmonic state space 
projections at steady state (y’(y) where y=x[3], y’=x[4]) and its respective Poincare’ map (denoted by Xp[3], Xp[4]), 
which includes three points stroboscopically sampled at the fundamental exciting period (e.g. 1/2 Ω= πT ). Figure 1a 

( 01.0=ζ ) describes the third subharmonic dynamics of a taut element where the element length and stretch satisfy the 

internal resonance of yx ωωω θ 3==  deduced from (17) ( 5926.0*,3/1 == µα ).  Figure 1b ( 018.0=ζ ) describes 

similar subharmonic dynamics of the smaller element with less stretch ( 8448.0,12.0 == µα ). Recall that the degree of 

nonlinearity  is controlled by the stretch (or the closeness of the initial length to midspan). Thus, the strongest 
nonlinearity is obtained for αµ −=1  (or 00 ab −=� ) and the degree of nonlinearity is portrayed by a larger volume of state 
space. We also consider here an additional case (not shown) of the internal resonance of type (iii)  where an element 
with the stretch deduced from (18) satisfies the relationship yx ωωω θ 62 == ( 666.0,3/1 == µα ). This case 

corresponds to the nearly zero pretension as αµ −1~ . 

We note that the forced vertical vibration of the system without element actuation includes solutions which consist of 
simple, small amplitude, periodic response that coexist with the large variety of ultrasubharmonics predicted by the 
internal resonances of the previous section.  
 

5. ACTUATION OF THE LOCALIZED ELEMENT 
 
Actuation of the smart element is obtained by harmonic perturbation of its length (9) with an amplitude that is smaller 
than half the element length (α>β) and a frequency of vibration ( 2Ω ) that can coincide or is incommensurate with that 

of the forcing frequency ( 1Ω ). Results from a numerical bifurcation analysis are obtained and discussed to reveal 
possible reduction of the directly excited vertical vibration via: i) parametric excitation, and ii) energy transfer from the 
directly excited vertical response to both rotation and horizontal motions. 

Proc. SPIE Vol. 4693 411

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 9/25/2017 Terms of Use: https://spiedigitallibrary.spie.org/ss/TermsOfUse.aspx



Figure 2 describes bifurcation diagrams (calculated using the reduced system (13) and then verified with (7)) that depict 
the response versus 2Ω of both small and finite elements described above and excited near the horizontal natural 

frequency ( 5.1,05.0 1 =Ω=γ ) with small (nondimensional) actuation ( 01.0=β ). The vertical response of the small 

element ( 8448.0,12.0 == µα ) in Figure 2a reveals existence of both aperiodic dynamics (e.g. quasiperiodic/chaotic) 

and periodic response for mode-locked frequencies (e.g., nm /12 Ω=Ω ). Examples of both periodic and quasiperiodic 

response are portrayed in Figure 3. Note that  the quasiperiodic response (Figure 3a: 7.02 =Ω ) is defined by a non 

finite number of Poincare’ points that describe an invariant topology whereas the periodic dynamics is depicted by a 
single point (Figure 3b: 0.32 =Ω ). The reduction in vibration amplitude is apparent for both examples (compare 

Figure 3 with Figure 1b) and is pronounced for vibrations with a large frequency ( 5.22 >Ω ).  

The vertical response of  the larger element ( 666.0,3/1 == µα ) in Figure 2b is aperiodic (for the range of frequencies 
tested) and reduces the directly excited vibration for parameters governing internal resonance conditions where the 
mechanism for vibration reduction consists of energy transfer to rotation and slight horizontal translation. This can be 

observed from the quasiperiodic angular state space ( ]6[],5[ ’ xx == θθ ) and Poincare’ map (Xp[5], Xp[6]) in Figure 

4b ( rad28.0|~|θ ). Note that the strong nonlinearity of this case does not yield (for the given damping) the anticipated 

periodic mode-locked response for element actuation at the period of the direct excitation ( 5.112 =Ω=Ω ). 
 

6. CLOSING REMARKS 
 
We have derived a lumped mass model for a taut string dynamical system that incorporates a smart localized 
piezoelectric element that can change its length to counteract the externally excited vibrations in the vertical plane. The 
strategy employed consists of an open loop multifrequency excitation approach enabled via harmonic actuation of the 
smart element by a slight harmonic change of its length. We have demonstrated the possible reduction of vertical 
vibrations due to external excitation in the vertical plane.  
Result of a numerical bifurcation analysis reveal possible vibration reduction via two distinct mechanisms: i) 
parametric excitation, and ii) energy transfer from the directly excited vertical response to both rotation and horizontal 
motions. We note that the former appears more robust than manipulation of internal resonances. 
Future research will explore more systematically the influence of smart element actuation on system dynamics. 
Furthermore, it will concentrate on a finite set of localized structural elements (the minimal number and optimization of 
their location) for a variety of environmental conditions. A parallel effort should be devoted to a continuum description 
for the piezoelectric sleeves and identification of their properties from a controlled set of experiments. 
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Fig 1 Third subharmonic response without element actuation ( 5.11 =Ω ): state space (dy/dt(y), y=x[3], dy/dt=x[4]) and 

Poincare’ map (Xp[4](Xp[3])) for a) 5926.0,3/1 == µα , b) 8448.0,12.0 == µα . 
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Fig.2 Bifurcation diagrams (y(w2= 2Ω ), 5.1,05.0,01.0 1 =Ω== γβ ) for: a) 8448.0,12.0 == µα , b) 

666.0,3/1 == µα . 
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Fig 3 Modulated response of the actuated element ( 5.1,05.0,01.0,8448.0,12.0 1 =Ω==== γβµα ): state space 

(dy/dt(y), y=x[3], dy/dt=x[4]) and Poincare’ map (Xp[4](Xp[3])) for a) 7.02 =Ω , b) 0.32 =Ω . 
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Fig 4 Modulated response of the actuated element ( 5.1,05.0,01.0,666.0,3/1 21 =Ω=Ω==== γβµα ): a) state 
space (dy/dt(y), y=x[3], dy/dt=x[4]) and Poincare’ map (Xp[4](Xp[3])) , b) state space 
( ]6[/],5[),(/ xdtdxdtd == θθθθ ) and Poincare’ map (Xp[6](Xp[5])). 
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