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Abstract. We investigate the bifurcation structure and the onset of chimera states in coupled self-excited underactuated rigid-

body arrays. The dynamical systems considered consist of two elastically coupled arrays of identical single and double pendula 

augmented by inertia wheels which exhibit asymptotically stable equilibria, periodic limit cycle oscillations, and non-

stationary rotations. The analysis reveals that synchronous periodic oscillators are in-phase whereas quasiperiodic oscillators 

are out-of-phase. Furthermore, non-stationary solutions exhibit combinations of quasiperiodic and chaotic oscillations and 

rotations of asynchronous individual elements culminating with coexisting synchronous and chimera states.  

 

1. Introduction and Problem Formulation 
 

Self-excited synchronous oscillations in multibody dynamical systems have been documented since the middle 

of the seventeenth century. Huygens made the amazing observation that two pendulum clocks hanging from a 

common flexible support swung together periodically approaching and receding in opposite motions [1]. 

During the last two decades there has been a growing interest in the stability and robustness of continuous and 

intermittent synchronization of periodic and nonstationary oscillations which in addition to neural network 

populations have been observed in nanomechanical resonator arrays [2] and in experiments of mechanical 

networks [3]. Of particular interest are the chimera states in which the symmetry of an oscillator population is 

broken into a synchronous part and an asynchronous part culminating with a novel class of decoherent 

behaviour [4]. In this research we investigate the bifurcation structure and the emergence of chimera states in 

a pair of elastically coupled pendulum arrays that are augmented by inertia wheels governed by a linear 

feedback mechanism. Figure 1 depicts the configurations of a single (Fig.1 left) and double (Fig.1 right) arrays. 

We derive the equations of motion and examine the complexity of coexisting synchronous and asynchronous 

self-excited oscillations in the coupled arrays. 

 

   
 

Figure 1: Sketch of the elastically coupled single (left) and double (right) inertia wheel pendulum arrays. 

 

2. Discussion of Results 
 

We combine an analytical and numerical investigation to determine the bifurcation structure of the self-excited 

elastically coupled arrays which exhibit periodic limit cycle oscillations and non-stationary rotations. Figure 2 

depicts the bifurcation structures of the coupled arrays as a function of the nondimensional stiffness coupling 

parameter. We note that both the single (Fig.2 left) and double (Fig.2 right) pendulum configurations exhibit 

a distinct range of stiffness where limit cycle oscillations occur (marked as region II). However, only the single 

pendulum array includes a region of nonstationary oscillations (marked as III).   

 

   
 

Figure 2: Bifurcation diagrams of the elastically coupled single (left) and double (right) arrays. 
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We also investigate the synchronous dynamics and the emergence of chimera states within the system and 

make use of the Kuramoto order parameter [4]. This parameter enables identification of synchronized in-phase 

or anti-phase solutions where the order parameter for both arrays is unity whereas a chimera state is portrayed 

when the order parameter for one array is unity and the order parameter of the second array varies in an 

irregular manner between zero (describing a decoherent state) and unity (a synchronous state). Figure 3 depicts 

example chimera states of the coupled single inertia wheel pendulum array as a function of increasing coupling 

stiffness parameter. We note that a small coupling stiffness reveals a transition from an IP synchronized state 

of periodic limit-cycles (Fig.3 left) to a chimera state (Fig.3 centre-left) where the quasiperiodic response of 

one array (blue) is synchronized whereas the second array (red) is decoherent. A further increase of the stiffness 

(Fg.3 centre-right) reveals that both of the coupled arrays are decoherent (both red and blue arrays are not 

synchronized) culminating with IP synchronization of both coupled arrays for large stiffness. 

 

 
Figure 3: Chimera states of the elastically coupled single pendulum arrays. 

 

Figure 4 depicts a transition from a synchronized state of periodic limit-cycle solutions (Fig.4 left) to a 

chimera state of chaotic rotations (Fig.4 center) culminating with a decoherent state of chaotic oscillations 

(Fig.4 right) of the double pendulum arrays. 

    
Figure 4: Synchronized (left), chimera (center) and decoherent (right) states of the double pendulum arrays. 

 

The combined analytical and numerical methodologies employed enable construction of a comprehensive 

bifurcation structure that sheds light on emergence of chimera states that appear at the transition from 

synchronized oscillations to decoherent rotations in elastically coupled single and double inertia wheel 

pendulum arrays. 
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