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Summary. We identify the existence of nonlinear viscoelastic damping in conductive metallic nanowires that are subject to magnetic 

excitation and investigate its effects on the spatiotemporal dynamical system response. We derive a consistent continuum-based modal 

dynamical system for a geometrically nonlinear viscoelastic nanowire that is subject to magnetic excitation and employ a combined 

asymptotic and numerical methodology to estimate the magnitude of viscoelastic damping from controlled benchmark nanowire 

experiments. The criteria for bistable planar response estimated from experiments enables estimation of the cubic viscoelastic damping 

parameter for small magnetomotive excitation culminating with the transition to three-dimensional periodic and nonstationary whirling 

nanowire dynamics with increasing magnitude of excitation.  

 

The significance of nonlinear damping has been documented for both micro- and nano electromechanical systems 

[1-4] where the magnitude of the effective quality factor measured in controlled experiments has been shown to 

decrease significantly with increasing amplitude of excitation [4: Fig.2 inset]. Furthermore, while the transition 

from planar response to three-dimensional whirling dynamics has been investigated systematically for large scale 

models [5 and references within], conditions for spatio-temporal whirling in micro/nano-scale models have yet to 

be determined. We thus formulate a continuum-based geometrically nonlinear three-dimensional initial boundary-

value problem (IBVP) for a highly-tensioned nanowire (see Figure 1 left) which consistently incorporates cubic 

viscoelastic damping assuming a Voigt-Kelvin constitutive law [1,2,5] and magnetic excitation [6]. The IBVP is 

then reduced to a modal dynamical system describing three-dimensional whirling that exhibit a 1:1 internal 

resonance between the in-plane and out-of-plane oscillation directions. We employ a generalized averaging 

formulation to obtain the reduced-order system slowly varying evolution equations. Analysis of the in-plane 

amplitude evolution equation [7] yields the system damping backbone curve (Figure 1 right) which enables 

comparison with measured data from controlled experiments. The intersection of the zero-response amplitude with 

the effective equivalent damping parameter yields the magnitude of the linear system damping parameter and the 

slope of the backbone curve enables estimation of the nonlinear viscoelastic parameter as a function of increasing 

magnetic excitation. 

 
Figure 1. Magnetomotive nanowire sketch (left) and damping backbone curves from experimental data in [2] (right). 

 

The slowly varying evolution equations for the planar case are investigated to yield the following: (i) an increase 

of cubic damping with constant magnetic excitation (Figure 2 left) culminates with a decrease of the maximal 

amplitude and consequent elimination of bistable solutions (ii) an increase of cubic damping with a corresponding 

increase of magnetic excitation enables maintain an equal hysteresis frequency range. 

 
Figure 2. Asymptotic planar frequency response with parameter estimation from [2]: Influence of increasing cubic damping with fixed 

magnetic input amplitude (left) and influence of cubic damping with constant hysteresis frequency bandwidth (right) - zero cubic damping 

(blue), small cubic damping (red), finite cubic damping (black). 
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Analysis of the coupled slowly-varying evolution equations yield criteria for two thresholds describing: (i) the 

transition from planar periodic oscillations with finite linear damping to three-dimensional periodic whirling 

dynamics and (ii) the transition from periodic whirling to nonstationary three-dimensional oscillations which can 

be quasiperiodic or chaotic [5]. Numerical integration of the dynamical system for different values of system 

parameters near its one-to-one internal resonance reveal periodic (Figure 3 left), quasiperiodic (not shown) and  

chaotic whirling (Figure 3 right) where the direction of angular momentum is sensitive to initial conditions. We 

note that in this analysis we have ignored the influence of boundary damping and thermoelastic damping that are 

expected to govern dissipation mechanisms for nanowires operating at very low temperature [4].  
 

 
Figure 3. Numerical response for spatio-temporal whirling dynamics: periodic state-space projection (left) and chaotic Poincare’ map (right). 
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