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ABSTRACT

We investigate the synchronization and decoherence of a self-excited inertia wheel multiple rigid-body dynamical system. We employ an
Euler-Lagrange formulation to derive a nondimensional state space that governs the dynamics of a coupled pendula array where each element
incorporates an inertia wheel. The dynamical system exhibits multiple equilibria, periodic limit-cycle oscillations, quasiperiodic, and chaotic
oscillations and rotations. We make use of a combined approach including a singular perturbation multiple time scale and numerical bifur-
cation methodologies to determine the existence of synchronized and decoherent solutions in both weakly and strongly nonlinear regimes,
respectively. The analysis reveals that synchronous oscillations are in-phase, whereas quasiperiodic oscillations are anti-phase. Furthermore,
the non-stationary rotations are found to exhibit combinations of oscillations and rotations of the individual elements that are asynchronous.
A Kuramoto order parameter analysis of representative solutions in various bifurcation regimes reveals the existence of chimera-like solu-
tions where two elements are synchronized, whereas the third is desynchronized. Moreover, synchronous solutions were found to coexist

with stable chimera solutions with a constant phase difference between the oscillators.
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During the last two decades, there has been a growing inter-
est in the stability and robustness of continuous and intermit-
tent synchronization of periodic and nonstationary oscillations
that have been observed in controlled experiments of mechanical
networks. Some examples of synchronization in rigid-body and
continuous dynamical systems have been documented for cou-
pled mechanical metronomes,' coupled pendula suspended from
a moving beam,” and a nanomechanical cantilever array.’ Theo-
retical models for coupled metronome system experiments that
exhibit synchronization of periodic limit-cycle oscillations incor-
porate generating self-excited escapement mechanisms that are
based on a phenomenological van der Pol oscillator* or on impul-
sive forcing.” An alternative mechanism, for the generation of
periodic limit cycles in a rigid body dynamical system, is an iner-
tia (or reaction) wheel where self-excited oscillations are governed
by controlling the torque via a coupled electrodynamic motor.® In
order to resolve the complexity of synchronous and asynchronous
self-excited oscillations in a mechanical network, we consistently

model a multibody dynamical system and employ a combined
analytical and numerical approach to investigate its self-excited
dynamics. The theoretical analysis includes (i) the derivation of
a coupled multibody dynamical system that incorporates inertia
wheel feedback control for optimal self-excited operation; (ii) the
asymptotic multiple-scale analysis of the weakly nonlinear con-
figuration for the dynamical system where a set of slowly varying
evolution equations enable a stability analysis of synchronous
oscillations; and (iii) the numerical analysis of a strongly non-
linear configuration where in-phase (IP), anti-phase (AP), and
chimera-like (CL) states can coexist augmented by global homo-
clinic bifurcations. The significance of this research is twofold.
First, the proposed combined analytical and numerical method-
ologies will enable consistent identification of local and global
stability thresholds of the multibody system for both weakly
and strongly nonlinear ranges of operation, respectively. Sec-
ond, the combined methodologies enable the construction of
a comprehensive nonlinear bifurcation structure, incorporating
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alternative feedback laws for optimal self-excited oscillation sta-
bilization in mechanical networks.

I. INTRODUCTION

An inertia wheel pendulum (IWP) is a simple pendulum aug-
mented by a rotating wheel at its end and was first introduced
by Spong, Block, and Astrom.” The coupling torque between the
wheel and the pendulum can be used to control the motion of the
pendulum. Although this device exhibits relatively simple dynamic
properties, it also obtains several interesting properties such as
underactuation, which stems from the fact that it has two degrees of
freedom with only one actuator, and nonlinearity, since the dynam-
ics are described by an oscillating pendulum.® The IWP is, therefore,
an intriguing and classical testbed used to study new control strate-
gies such as the design of a robust controller for the stabilization
of the inverted IWP® and novel mechatronic systems that utilize an
inertial wheel for their dynamics, for example, the stabilization of a
wheel-robot.’

To control this unstable nonlinear plant, a control action capa-
ble of dominating the gravity torque is required. An effective solu-
tion to this constraint implements a hybrid-type strategy in which
a dual controller method is applied. First, a nonlinear controller is
used to swing up the pendulum to an inverted position, and then a
linear controller is used for local stabilization at the inverted posi-
tion; this scheme has been successfully enacted in many types of
inverted pendula problems.'’~'* A less intuitive method to swing
up and reach stability at the inverted position uses methods from
bifurcation theory and energy-type considerations to construct a
bounded continuous control law.'>'* We apply a bounded contin-
uous control law globally to coupled pendula in two spring-coupled
arrays to study the non-stationary dynamics and synchronization
within this mechanical network. In our system, the controller does
not serve any specific objective function as it would in most mechan-
ical systems. Rather it acts within the dynamical system to desta-
bilize it from its zero equilibrium and produce different dynamical
behaviors.

Spontaneous synchronization is encountered in various fields
of science, engineering, and social behavior.'>'® Examples are end-
less, and some well-known ones include the self-excited reso-
nant vibrations of the London’s pedestrian-crowded Millennium
Bridge.'” This response was caused when the pedestrians’ footsteps
spontaneously synchronized with the vibrations of the bridge, there-
fore amplifying them. Another common example is the synchronous
flashing of fireflies in Southeast Asia. Male fireflies are known to
emit rhythmic light pulses in order to attract females and are able
to synchronize their flashes with their neighbors. In fact, for 300
years, travelers to Southeast Asia had been witnessing and detailing
large swarms of fireflies blinking on and off in unison. This began
to be recorded in scientific journals by the beginning of the 20th
century and was made famous within the mathematics community
when Mirollo and Strogatz'® suggested a simple model of episodic
and pulse-like interactions to explain this phenomenon. Although
the first example of spontaneous synchronization was first reported
in the 17th century, a few centuries went by before this was to be for-
mulated mathematically. The first to do so was Yoshiki Kuramoto,"
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what he suggested is known today as the Kuramoto model. This
model allowed for a breakthrough in the study of synchronization
in coupled oscillators since it enables a simple measure of the degree
of synchronization within a system. Applying this model together
with the Hilbert transform”’ allows us to numerically analyze the
synchronous dynamics of the IWP array.

In mechanical networks, synchronous dynamics occur when
there exists a sufficiently weak coupling strength within the system.
Theoretical explanations for this phenomenon have been proposed
since the last century.”’ More recently, some studies have set out to
explain this phenomenon by exploring the parameter space of syn-
chronized identical simple oscillators that interact through a com-
mon support.”>”* While other studies have suggested control laws to
control the synchronous oscillations of systems ranging from cou-
pled pendula’** to hierarchical networks of coupled oscillators.”
However, unlike these simple oscillators, constructing an accurate
model of a system of coupled metronomes is challenging because of
the complex escapement mechanism within the metronomes. Con-
sequently, such models commonly incorporate nonlinear terms to
describe the operation of the escapement, such as a nonlinear van
der Pol type damping term*’ or a discontinuous impulse function™*
that provides a higher degree of realism to describe the escapement
mechanism of the metronome or clock.”” In the IWP array, a contin-
uous model is constructed directly from the rigid body mechanics of
the system. The self-excited oscillations in the proposed system arise
not because of the common van der Pol type damping applied to
similar pendula systems’’ but rather because of a continuous under-
actuating controller common to many engineering systems. We note
that the dynamics of the aforementioned mechanical networks were
limited to periodic oscillations. We propose a network capable of
periodic, quasiperiodic, and chaotic dynamics. Rather unintuitively
chaotic systems may (i) be controlled and (ii) synchronize.”"*> Con-
trol of chaos is essentially a tracking problem in which one designs
a controller that guarantees that regardless of the initial conditions
the closed-loop controlled system converges to a specified trajectory
within the chaotic attractor. A solution to this tracking problem was
detailed by Ott, Grebogi, and Yorke, which is now known as the
OGY method.”” Synchronization in chaos implies that despite the
sensitive dependence on initial conditions the state error between
two chaotic systems goes to zero. Recent developments allow for fast
experimental determination of these synchronous domains* in real-
world systems, and experimental studies have shown the existence
of synchrony within chaotic coupled pendula® and rotating dou-
ble pendula systems.” The literature on control of synchronization
is abundant. However, as the focus of this work is on the dynam-
ical systems perspective to the transition from synchronization to
decoherence (and its possible bifurcation structure with chimera-
like solutions), we have not elaborated on multiple alternatives to
control synchronization.

The paper is organized as follows: In Sec. II, we formulate
the nondimensional autonomous system and its state space rep-
resentation. In Sec. III, we conduct a linear stability analysis of
the zero equilibrium. Section IV contains an asymptotic analysis
of the synchronized dynamics of the IWP array. This includes the
implementation of the method of multiple scales to formulate an
existence criterion for IP synchronization. A comprehensive bifur-
cation diagram is constructed via continuation methods in Sec. V.
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The Kuramoto order parameter is then derived and used to study
the synchronous states of the system numerically. We summarize
our results in Sec. V1.

Il. PROBLEM FORMULATION
A. Equations of motion

An IWP array is composed of three IWPs coupled by a beam
(1). An Euler-Lagrange approach is implemented to formulate the
dynamical system, where the system energies are that of the beam,
rods, pendulums, and wheels, leading to the system kinetic and
potential energies being formulated in Egs. (1) and (2), respectively,
under the assumption of inextensibility of the rigid-body elements
of the dynamical system portrayed in Fig. 1,

1 :
KEpe = [mp (v94)” + Ty (gk)z] >

1

KEuk = = [mw (Vw,k)2 + Lvem (¢k + ék + l/f)z] >

\S]

(1)
1 .
KEy =5 [mw (v0) + Lyem (‘/’)2]»
1 .
KE, = Jmy () +1, ()

PE,r = m, [l¢ (1 —cosv) +1, (1 — cos Qk)]g,

PE,x = m, [lu, (1 —cosy) + 1, (1 — cos Qk)] J 8 @
2

PE, = my [lyom (1 —cosy)] g
PE, = m, [ld, (1 — cos 1//)] g

The subscripts p, w, ¥, and b represent the pendulum,
wheel, rod, and beam, respectively; k=i — 1,i,i+ 1 indicates
the location of the oscillator from left to right. The velocities
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Vpks Vwks Vy k> and v x and full derivation of the system energies can
be found in Appendix A. The system generalized forces,

Qy =—Dy ¥,
Q, = —Dy by, (3)
Q= (Tk - D¢ ¢k) >

include a damping term obtained with a Rayleigh’s dissipation func-
tion with dissipation constants Dy, Dy, andD, for each oscillating
element of the system. Energy enters the system by means of a torque
applied by a DC-motor to each wheel. There is no external forcing
applied to the system, thus yielding a system of self-excited oscil-
lators. The simplified but commonly used model of a DC motor
in Eq. (4) includes the motor-to-disk reduction ratio N, the rotor
coil resistance R, a torque constant k,,, and a back electromotive
force (EMF) constant k,,. The control voltage Vjx = G, sin 6 + X
+ Gy is a partial state feedback, thus forming an underactuated
system with control gains G;,

7 = (Nkn/R) [Gisin 6 + Gk + (Gs — Nk,) ] . (4)

This control law is one of the many alternatives that can be employed
for underactuated control systems. Although simple and straight-
forward, it allows us to study the synchronous dynamics that arise
from self-excitation using purely physics-based modeling without
the need for phenomenological terms to describe the system dynam-
ics. This, in turn, allows us to explore synchronization in mechanical
systems beyond the expected periodic limit-cycle oscillations. Using
Egs. (1)-(4), we construct the Lagrangian function .2 = KE — PE
and arrive at the Euler-Lagrange equations of motion,

d/dt (0.2/3q) — 92 /0q = Q"°. (5)

/ //////// //////////////yt//////////////////////////

lw aN

4)c\

FIG. 1. Definition sketch of an IWP array.
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With generalized coordinates,

a=W 61 6 O ¢ G Gin), (6)

leading to the time-invariant nonlinear dynamical system,

M{=F(q.4), 7)

where the mass and forcing matrices are

Lepp + 31, m;j; my3
M=| mp)" @+ L L-Lal,
(mls)T I, - I3 I, - I3

Qy — Rosinyy — Ly 40 | (B) sin A
Qpjim1 + Legs Y2sin Ay — Ry sin6;_,
Qo + Lpyr?sin A; — Ry sin A,

F= Qpjit1 + qusllﬁz sin Aj;) — Ry sin 6y,
Qgp,i-1

Qq),i
Qg1

and

mp = [Iw + Lgcos Ay Iy + gz cos Ay 1, + Ig3 cos A,-H] ,
ms=1I,-[1 1 1],
Lg = lfl,mw—i—lf,mp—i—l N
Ly = [my +3 (my +m,)] B +2my B, +21,,

9)
Ly = (lymy +1,m,) 1y,

R, = (mW L, +m, lp) %
R, = {[mh +3 (mp + mw)] lw + melw,m,} 9
Ay =Y — b

B. Nondimensional state space

The nondimensional system is obtained by defining the nondi-
mensional time scaling v =1t/Ts=wt and frequency
s = /R /I,;1. Applying this to Eq. (7), the nondimensional

autonomous system
Mq:: = f: (q; qr) (10)

is formulated, where d/dt represents the first nondimensional time
derivative. The nondimensional mass and forcing matrices are given

explicitly as
Mo+ 3y mj; my;
A AT
M= (mIZ) My Iaxs pw - Iaxs |
A N\T
(m13) JTRVEN EE S VIR £
(11)
—3 Yo sin AyO2, — ke sinyy — 8y, '
wssin Ai_y (Y)* — sin iy — 8,i-10,1 f
W3 sin A; (Y)> — sin6; — 8,0, f
F=| pssin Aipy () = sinbiy — 8pip10ris1 | = | fa
F3prin + a6y + Tisindi fs
C3¢pci + I'20;; + Ty sin6; fs
Dsrivn + Tabripy + Tisiniyy 7

We note that fi,34 incorporate gyroscopic terms from kinetic
energy, restoring forces from potential energy, and dissipation from
a Rayleigh’s function. Furthermore, fs¢; incorporate nondimen-
sional control torques augmented by the dissipation of the inertia
wheel. This nondimensional system now includes nondimensional
inertia parameters

quZ qu3 Iw

M3 =
qul qul qul

m=1+4p, M= , (12)

nondimensional damping coefficients
8¢ = Dg/Ry 8y = Dy /Ry, (13)

and a ratio of gravitational potential energies k = R,/R;. By defining
the nondimensional control gains,

Nk,
I'=—G,
RiR
Nk,
Ty=—2G, 14
2= R (14)
Nk, R
Iy = Gy — Nk, —Dy—— |,
7 RR [ o ¢Nkm]

we can examine the system dynamics with respect to control gain
inputs. We define the state vector

x=[y 0 ¢], (15)
where
v=[v v
0=[01 61 6 67 Oi+1 6.4],

¢ = [d)r,i—l P ¢1,i+1]-

Taking the first nondimensional time derivative of the state vector
x, we find the state space representation

=[x A x f x% £ x fi i fo £] (16

of the IWP array. The values f; are given in Appendix B. Note that
the nondimensional system in Eq. (10) is governed by 10 nondimen-
sional parameters, whereas the dimensional Eq. (7) is governed by 21
parameters.
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C. Limiting cases
By fixing the far pendulums at

01 = 9i+1 = ¢i—1 = ¢i+1 =0, (17)

we obtain a single pendulum on an oscillating base. The state vector
of the array can now be reduced to x € R?, and the nondimensional
autonomous system in Eq. (10) is condensed to

qu = F(‘l» qr)> (18)
where

Ko+ Mw + U3 COS Ay
M= | uy+ p3cos A M1 Hw |
Mw M

— W3 sin AO2 — ke siny — 8y,
F= w3 sin Ay —sin@ — 840, =
F3¢r + err + Fl sin @

All nondimensional parameters y; remain unchanged apart from
M2 = Iega/Ieq, which now accounts for one pendulum instead of
three such that

feqz = (m;7 +my, + mW) lj, + 2m¢lf/,,cm +1.
The x € R® state vector is given by

x=(0 v. 6 6, ¢) eR% (19)

thus, the state-space formulation is

1
det (1\7[)

(% det (M) Fop, %det(M) Fop, —B),

(20)

F = (J?z —Jza) Ha + (J;s —fl> M3 cos A,
Boi—fi+ () mocosas
By = fi [ + 12) 1 — (us cos A + p1,,)%]
+ [ (s cos & = jua) + i (s cos & = )]
and the determinant of the mass matrix is
det (M) = p,, [pt2 — (113 cos A)*].
A single element within the array reduces to the third-order

dynamics of an inertia wheel pendulum. By zeroing the effects of
the coupling beam and the oscillating rods, we obtain the nonlinear

TABLE . Estimated values of nondimensional parameters for the strongly nonlinear
system.

1 = 1.0369 2 =0.5026 w3 =0.3552 = 0.0369
R, = 2.4436 R, = 3.4742 K =1.4217

differential equations of a single inertia wheel pendulum,

U1 My _ —80; — sin6
(uw uw> e = <r1 Sin6 + 56, + F3¢,> - ey

. T .
By defining the state vectorx = (§ 6. ¢:) , we obtain the state-
space representation

X2
X, = — T+ 1)sinf — (T, +6)60, — T3¢,
A+ 1/py) T+ 1]sin0 + [(1 + 1/py) Tz + 8] 0. + T3¢,

(22)

We note that I'; relates to the dissipation of energy from the system
and, therefore, primarily controls the lengths of transients.

D. Estimation of parameters

Following an experiment conducted on the oscillations of cou-
pled pendulums,”** we derive an estimation of the physical dimen-
sions of the system without the wheel. The length of the wheel from
the pendulum base ,, is estimated by assuming the wheel is located
at a three-quarters length of the pendulum. We note the system ele-
ments that are made of aluminum alloy 6061 (2700 [kg/m’]) and
find the masses and moments of inertia. All dimensional parameters
are listed in Appendix C. These lead to nondimensional parame-
ters of the strongly nonlinear system given in Table I. The weakly
nonlinear system is analyzed for a different set of nondimensional
parameters (this will be outlined in further depth in Sec. I'V), and
these parameters can be found in Table II.

I1l. EQUILIBRIUM ANALYSIS
A. Stability maps

The IWP array’s zero equilibrium with respect to gains I';(I';)
is estimated numerically using orthogonal collocation by imple-
menting the continuation software MatCont;*" all free parameters
used in MatCont are given in Table IV. We construct the stabil-
ity map (Fig. 2) by obtaining Hopf bifurcation for discrete values
of gains I';(T";). The discrete values found in the simulations are
indicated by bold points, and linear extrapolation is conducted
between every two points. Furthermore, a Neimark-Sacker bifur-
cation threshold was found (blue-dashed), indicating the onset of
another frequency of oscillations and producing a quasiperiodic

TABLE Il. Estimated values of nondimensional parameters for the weakly nonlinear
system.

n=1.03 2, =0.8 3 =0.02 My =0.03 K =0.95
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response. This method, however, is not to suggest that an ana-
lytical solution cannot be obtained. The method for obtaining an
analytical expression for the Hopf bifurcation threshold is out-
lined in Appendix E by implementing the algorithm derived by
Guckenheimer’' on the IWP array. The analytical analysis of the
zero equilibrium yields the characteristic polynomial 3"} ¢,A"; for
our parameter set, we obtain the coefficients

-1
cp = —detJ|o = —Mg(llz - 3#%) kT3,
= F§ 'fl(FI:FS): (23)
=I5 f(I',T3),

indicating that a saddle node at I'; = 0 produces a codimension 2
triple zero bifurcation.

Figure 2 reveals areas in which the zero equilibrium is asymp-
totically stable (region I—red); this region then loses stability to
a super-critical or sub-critical Hopf bifurcation (black-solid) for
negative or positive values I';, respectively. The subcritical Hopf
bifurcation gives rise to a very narrow bistable region III, and to
the emergence of stable limit cycle oscillation (LCO) regions IT
and IIIg. These LCOs lose stability via a Neimark-Sacker bifur-
cation (blue-dashed), and quasiperiodic oscillations are obtained.
These eventually make way to chaotic oscillations and then to the
rotational dynamics of the pendula. The strongly and weakly non-
linear systems produce similarly valued Hopf bifurcations. However,
the sub-critical bifurcations observed for positive values of gain I';
appear only in the strongly nonlinear system (Fig. 2—top).

B. Internal resonances

The solution for the seven natural frequencies of the IWP array
produces three zero frequencies,

W) =Wy = W3 = 0. (24)

Together with the three unique frequencies,

0)420)5:\/F1+1,

" Tipts St (cos Ap) — pa(1+T0) — k + as
6 — N >
\ 2 [M% o (cos? Ay) — Mz] (25)
" a1+ T0) + ke — Ty 300 (cos Ay) + ae
7 — . >
2[1B3 i (o8 A = o]

where a; is given in Appendix F. The non-zero natural frequencies
and their ratios with respect to gain I'; are summarized in Fig. 3 for
k = 1.42. These produce a 3 : 1 internal resonance at I'; & 0.5 and
anear 1 : 1 internal resonance at I'; ~ 1.

Furthermore, we obtain the natural frequencies w; = /bsk
and w, = 1 of the weakly nonlinear system (4) and exploit the 1: 1
internal resonance to formulate a detuning parameter in Sec. I'V.

IV. ASYMPTOTIC ANALYSIS

We apply a singular perturbation approach using an asymp-
totic multiple scale analysis*>* to investigate the weakly nonlinear
single array system.

pubs.aip.org/aip/cha

I
o

J
(4]

-10

FIG. 2. Stability map of control gains I'3(I"y) for the weakly (top) and strongly
(bottom) nonlinear systems where region / (red) defines the parameter values
for a stable equilibrium and regions // and /Il (blue) define the parameter values
with possible limit cycles. The regions are separated by a Hopf threshold (solid
black line).

A. Cubic order system

We find the cubic order dynamical equations of motion by
expanding the transcendental functions in Eq. (10) about the stable
equilibrium 6; = ¥* = 0. This yields the approximated system

Mq.. =E (26)

We note that the matrices M and F are given in Appendix G. For
the purpose of simplification, we conduct an order analysis of the
leading coefficients of the inertia variables. We can first assume that
Iy, andus are of order O(¢) << 1 and that w,, u,, andk are of
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5 ; : . , By normalizing the first equation by a factor of u,, the second

of through fourth equations by 1, and the fifth through seventh equa-
tions by pu,, and substituting Eqgs. (27) and (28) into Eq. (26), we
=37 1 obtain
3
& ] ¥<In = E (q’ qr) > (29)
1 -
where
% -05 0 05 1 Mo+ 3y m, m .
10 T
9 M= (mu) J7STEN ENE TR VAV ERE
8 M =
3 6 (Ql3> JZ2V EIVE S VAVRN EE!
~ 5 =
> 4
33 and
2 : A3 3
! —eb, Y [(Ak - %) 93,,{] —bs (¥ = L) — bssy v
) A3 03
€b, (Ai—l - %1) Y2 —bs (91'—1 - ’:) — beBa,i-10z,i1
FIG. 3. Natural frequencies ws s (black), ws (blue), and ey (red) with respect to eb, ( A — Ai) W2 — b (9,. _ ﬁ) — beSy.0n,
I'y and k = 1.42 (top) and their ratios (bottom). A 6 ”
3 3
E=| ebs <Ai+1 - A';“) Y2 —bs (9i+1 - 9’2’1) — b68,i410z 41
03
order O(1). This assumption leads to the O(e?) ratios biT3¢e i1 + byT20: 1 + b1y (9,--1 - = 1)
e?
€*b, = I/ 25 €*b, = w3/ iy @ b;T3¢, i + b;020:; + b; Ty (91’ - ?>
3
€2by = [/,  €2by = s/ byLseivs + b7T200 40 + by 1y (9i+1 - 0%)
and to the O(1) ratios By constructing the bifurcation diagram of the weakly nonlinear
cubic order IWP array in Eq. (29) and comparing it to the full
bs =1/py, bs =1/, by =1/, (28) weakly nonlinear IWP array in Eq. (10), we find that the Hopf bifur-
cation is maintained. The bifurcation structure of the cubic order
weakly nonlinear system is overlaid on the bifurcation structure of
4 . , , , . . . . the full weakly nonlinear IWP array (5). The solutions diverge as I's
is increased from the Hopf bifurcation threshold; furthermore, the
3r 1 truncated cubic order system displays only stationary periodic solu-
- tions while the full system obtains also non-stationary oscillations
327 ) and rotations.
1
B. Order equations
o . . . . . . ‘ . .
0 1 2 3 4 5 6 7 8 9 10 Applying the slow and fast time scales T,, = €"t and the deriva-
4 tives with respect to the time scales, we obtain
” d 9 dTl, 9 dT ,
- —:——+—_=D+6D>
3 dt — 9T, dt ' 8T, dt ° :
=Rl (30)
= & 2132 2 2 4
7 ﬁz(Do—i—eDz) = Dj 4 2DyD,e* 4 O (¢*).
00 1 2 3 :1 5 g‘; 7 ;3 5'; 1'0 We assume small angular displacement by expanding the general-
K ized coordinate q to the approximate solution form
_ T, ;3 T
FIG. 4. Natural frequencies w; (black) and w, (blue) of the weakly nonlinear a=¢elq au - an] +€[qs an - @]
system, =eq + €'qs. (31)
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.4 I| T T T T T 7
O /
o l ’ i
6 5 4 3 2 1 0
2 T . . . . .
PO
o i " N
6 5 4 -3 2 1 0
e T Y kil
] S e ————
8 = L . .
-6 5 4 -3 2 1 0
w2 " . E———— :
=46 | P i
S e
8], il .
-6 5 4 3 2 1 0
45 T
= P s
= | e
= L A .
: 0 ;
> 6 5 -4 3 2 R 0
I's

FIG. 5. Bifurcation structure of the weakly nonlinear cubic system (solid) and full
system (dashed) for 'y = —4.

We will assume small gains and small damping to obtain the small
parameters,
Fg, =€ 2f3

Fz = sz‘z 8¢ = 628¢

~ o o . 32
8pi1 = €280,-1 8o = €289 Bpir1 = €20p41 (32)

By substituting Eqs. (30)-(32) into Eq. (26) and collecting
terms of equal order of €, we obtain a set of seven equations. These
equations now prove convenient since the first four have trivial
solutions, while the last three are dependent on those solutions. By
considering the symmetry of the system, we neglect the quadratic
terms since the first nonlinear term is cubic.”” We obtain the order
equations,

O(e):
[MoD§ + CoDy + Ko] - q1 = 0, (33)
0(€®):
[MoD; + CoDy + Ky | - @3 = [FiD; + F,Dy — 2Dy D; My - q

1
- FsDé -qp + gKo : qf, (34)

where
1 0 0 0 0 0 O
01 0 0 0 0 O
0 01 0 0 0 O
My=|0 0 0 1 0 O O],
1 1.0 01 0 O
1 01 0 0 1 O
1 0 01 0 0 1

pubs.aip.org/aip/cha

0 0 0 O 0 0 0
00 0 O 0 0 0
0 0 0 O 0 0 0
C,=|0 0 0 O 0 0 0 N
00 0 0 —bTIs 0 0
0 0 0 O 0 —b,Ts 0
0 0 0 O 0 0 —b;T5
bsk 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 O
Kio=]| 0 0 0 1 0o 0 0],
0 —bTI, 0 0 0 0 0
0 0 —b, I, 0 0 0 0
0 0 0 -y 0 0 0
F, = -G,
3b biy+b, by+b, bi+b, by b b
by+b, 0 0 0 b 0 0
by + by 0 0 0 0 b3y O
Fz = hg, + b4 0 0 0 0 b3
0 0 0 0 0 0 0
0 0 0 0 0 0 O
0 0 0 0 0O 0 O

C. Solvability condition
The solutions to Eq. (33) can be expressed as
Q= V1A, 4 (v, Ay + V3 As + ViAL) €270 e, (35)

where A; (T,) and its complex conjugate A, (T,) are yet undeter-
mined complex-valued functions of the slowly varying time scale T,
and v; are the eigenvectors,

vi=(1 0 0 0 A A A),

vw=0 100 A, 0 0,
; (36)
=0 0 1 0 0 A, 0),
vi=(0 0 0 1 0 0 A,),
that satisfy the linear system
[—wiMy + i,Co + Ko - vi = 0. (37)

Furthermore, we quantitatively describe the nearness of w; to
, (4) by introducing the detuning parameter o defined as

€0 = w; — w,. (38)
Substituting the solutions: Egs. (35) and (38) into Eq. (34) yields
[MOD(Z) + CyDy + Ko] =8 e“rifo 4 & e o
F gy eerTo 4 g, g YT, (39)

where gl = (gll 12 g3 Liu L5 Lis g17)T is the secular
term. Vectors g; are provided explicitly in Appendix H. In order
to prevent growth without bound, the secular term must be elimi-
nated, meaning that Eq. (34) has a unique solution if the solvability
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condition

vi g =0, i=1---4 (40)

is satisfied.”>"* By solving Eq. (40), we now obtain the reduced order
system,

gu+ A (g15 + gis + g17)
g2 + Asgis
i3 + Aagis
Qs + Nogiy

=0. (41)

By substitution and isolation, the evolution equations D,A; = f; for
i=1,...,4are obtained from Eq. (41).

D. Slowly varying evolution equations

We express the amplitudes A; in their polar form A;(T,)
= (1/2) a; (T,) T2 in the evolution equations. Then by separat-
ing real and imaginary parts and rearranging, we obtain the eight
slow evolution equations,

Dra; = fa;

(42)
aDBi=fp; i=1,...,4

Since our goal is to identify the system’s synchronized behavior,
we use Eq. (42) to eliminate §; to form the slow flow system
phase difference equations. By subtracting the phase equations (i.e.,
ai11D:2Bi11 — aiD1f;), we reduce the set of equations to four ampli-
tude equations and three phase difference equations,

Dzlliz a,i i=1,...,4,

(43)
aaDayy = fok k=2,3,4,

3r/4
w2

wl4

Yip

-ml4

-7/2

-3r/4

- b

FIG. 6. Stability map of the attainable phase y for IP oscillations as a function
of control gain I's.

FIG. 7. Stability map of control gains I'3(I"y) where the existence of synchro-
nized solutions with constant phase yp = —7/8 (blue) appear adjacent to stable
equilibrium (red).

where the phase differences y;; are

iz = Tho + B — B,
vis = Tho + B — Bs, (44)
s = Th0 + B — Ba.

If all the pendulums are synchronized IP, then any two
phase differences y; — yix = 0. Assuming equal amplitudes of
the pendulums, we simplify the notation to a; = A;;p and
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FIG. 8. Time histories of the states for the weakly nonlinear cubic system for
control gains 'y = —4 and I'; = —5.
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FIG. 9. Time histories of the states for the weakly nonlinear cubic system for
control gains 'y = —4 and I's = —3.

a, = a; = ay = A, p, yielding the synchronized slowly varying evo-
lution equations,

D, A 1p = (msin (yp) — n2c0s (vp)) A 1p
+ (ns3sin (yp) — n4c0s (v1p)) Asip + NsAvp + N6AT ps

DyAy1p = 743 1 + NsAarp + (osin (vip) — miocos (vip)) A} 1
+ (uisin (¥ip) — 112¢08 (Vip)) Avps (45)

- w2

1
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|

- |
4 |
|

|

|

FIG. 10. The bifurcation diagram of the slow flow evolution equations (blue-solid)
and the truncated cubic order system (black-circles).
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gain Iy where numerical limit cycle amplitudes obtained numerically (circles) are
overlaid on values obtained via collocation.
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FIG. 12. Bifurcation structure of the strongly nonlinear solution with constant
gain I"'; where numerical limit cycle amplitudes obtained numerically (circles) are
overlaid on values obtained via collocation.
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An equilibrium analysis of Eq. (45) yields three equations with
two unknown amplitudes A;p and A, and an unknown phase
of oscillations yjp. Fixing the phase y;p and equating the amplitude
equations, we obtain the polynomial equation

Cy A?P + Cy AiP + Cs A?P + C3 AiP + C A[p =0. (46)

Since a zero A;p would lead to the stable trivial solution, we can
reduce Eq. (46) to the bi-quartic polynomial equation

G (A%P)4 to (A?P)3 tes (A?P)Z +oAp+a =0 (47)

A non-negativity constraint on the roots of Eq. (47) yields a region
in which IP oscillations with respect to phase oscillations, gain I's,
and a fixed value of I'; = —4 are attainable (Fig. 6—cyan region).
This yields two regions, the first I's <~ —4 in which bi-stable
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X
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synchronized and desynchronized solutions exist, and a region
I'; >~ —4 where no synchronized solutions exist. By fixing the
phase of oscillations y;p, we now find the synchronized solutions
with respect to I'; (I ), as displayed in Fig. 7. We note that synchro-
nized solutions exist near the Hopf bifurcation threshold and are lost
as I'; grows further from it. An example for the time histories of the
states within the region of synchronized solutions reveals stable syn-
chronization (Fig. 8) of the pendula. While, beyond this region, we
find the solutions are no longer synchronized (Fig. 9), rather they
have a constant phase difference.

The solution to the fixed point analysis of Eq. (45) for a con-
stant gain I'; = —4 yields a Hopf bifurcation at I'; & —6; overlaying
this with the cubic order IWP array given in Eq. (26), we find that a
Hopf bifurcation is obtained for matching values and that the error
is greatest near the threshold (Fig. 10). Since we did not force a

FIG. 13. Time histories of the states (top-left), power spectra (top-right), physical state space and Poincaré map projection (bottom-left), and conjugate momenta Poincaré
maps (bottom-right) for 'y = 8.4 and I's = —3. k = i — 1(black), k = i(blue), and k = i + 1(magenta).
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detuning of gains I'; and I'; near the Hopf threshold, the bifurcation
diagrams are nearly identical as we increase the value of I'; beyond
the bifurcation point.

V. NUMERICAL ANALYSIS
A. Bifurcation structure

A numerical bifurcation structure is constructed for the
strongly nonlinear IWP array. We note the fixed parameters

ARTICLE pubs.aip.org/aip/cha

I', = 0,k = 1.42, and initial conditions

T b T
X0=(—0—0_

T T
o X ox). 48
1 1 1 7 Oaa (48)

The bifurcation structure is constructed for a sampled range of gains
I'; and constant I'; = —4 (Fig. 11). A Hopf threshold is reached
at I'; & —7.8. Three main regions may be identified from Fig. 11.
Region I is defined as the region in which I's < I'y &~ —7.8 where
the zero equilibrium is stable. The Hopf threshold is reached (dashed

v v i YA
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FIG. 14. Time histories of the states (row 1), power
spectra (row 2), physical state space and Poincaré map
projection (row 3), and conjugate momenta Poincaré maps
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line) at T'; &~ —7.8, and the system then enters limit cycle oscillations
(region II), the amplitude of oscillations increases as the distance
from the Hopf threshold increases. In region III, the rod’s ampli-
tude ¢ exceeds 7, and it now performs rotations and reaches its
limit amplitude. We note the limit cycles lose stability when the gain
I'; > I';p & —6.58, where I'sp is the gain value in which the
magnitude of the Floquet multipliers is greater than 1 and a
Neimark-Sacker bifurcation is obtained. Furthermore, we plot the
bifurcation structure for constant I'; = —3 and varying values of I'y
in Fig. 12. A sub-critical Hopf bifurcation is obtained at ', ~ 8.4,
and this leads to unstable limit cycles that then reach stability at a
limit point cycle. We also obtain a supercritical Hopf bifurcation at
I'; & —1.6, and these limit cycles lose stability to a Neimark-Sacker
bifurcation at I'y & —1.85. The bifurcation diagrams are con-
structed by means of two different numerical approaches: (i) by
solving the nonlinear differential equations using a Runga-Kutta
method (ODE45) and (ii) via orthogonal collocation (MatCont). The
maximum relative error between both methods in region II for an
arbitrary state x5 is e & 0.35. This maximal error is obtained near
the Hopf threshold since the transient there is the longest. In order
to analyze the dynamics in each region of the bifurcation struc-
tures, numerical simulations were performed. For a time domain
analysis, the time histories of the states are plotted along with the
physical state space, i.e., the steady-state oscillations of the pendu-
lums and rod in the Y(X) projection and the conjugate momenta
projection. The conjugate momenta is defined as p; = 9.2/3q;.,
where q, = (1//r Ok ¢>k,,) is the first time derivative of the gen-
eralized coordinates. A Poincaré section is then sampled at every
positive zero crossing of the wheel angular velocity ¢, and is then
overlaid on the physical state space and the conjugate momenta
projection.

B. Periodic and nonstationary oscillations

The IWP array’s dynamics are simulated beyond the subcrit-
ical Hopf threshold (Fig. 13), and stable periodic solutions are
obtained. We show the different solutions obtained by increasing I'
beyond the supercritical Hopf threshold for constant gain I'} = —4
in Figs. 14 and 15. These numerical simulations reveal stable peri-
odic solutions (Fig. 14 - column 1) for gain values I'sy < T’ < T'3p
where I3 is the value obtained for gain I'; at the Hopf bifurcation
point and T';r is the value obtained for I'; when the Floquet mul-
tipliers lose their stability. For I'; > I';r, we obtain quasiperiodic
solutions (Fig. 14—column 2), chaotic oscillations (Fig. 15—column
1), and rotations (Fig. 15—column 2).

C. Synchronization and decoherence

The synchronous behavior of the strongly nonlinear system is
analyzed by performing a Hilbert transform on the time-dependent
signal x(7)."” Since the dynamics of this system can be chaotic, we
choose the average phase as the maximal amplitude obtained from
the frequency response of the wheel angular velocity. This allows
us to construct the analytical signal x,(t) = x(tr) + iH [x(7)] for
a narrow-banded signal, which then yields x,(t) = A(t) el@* ™1,
The phases ¢ (7) are then used to quantify the synchronization by
formulating the Kuramoto order parameter*

pubs.aip.org/aip/cha

FIG. 16. Stability map of control gains I';(T"y) depicting regions of synchronous
decoherent and chimera-like solutions: (/) stable equilibrium, (//) IP and AP oscil-
lations, (/I) synchronized and CL states, (/V) decoherent and CL states, and (V)
decoherent states.

N
1 X _
— i () —@syn(t)
Z(r)—ﬁl;e[‘”k Fom®], (49)

where @, is the average phase of the synchronous population
at time 7. A population is then considered to be synchronized if
|Z| ~ 1 and decoherent when |Z| ~ 0. We emphasize that Eq. (49)
is directly applicable to phase equations.”* However, Martens et al.*
demonstrated that considering only the phases of oscillators yields
an accurate criterion of transition to chimera states.

A stability map (Fig. 16) is constructed by varying the system’s
initial conditions. Beyond the region in which the zero equilibrium
is stable (region I), we find a region with coexisting IP and AP syn-
chronized dynamics (region II). This region then transitions into a
region in which either all three pendula are synchronized or two of
the three are synchronized and the third is desynchronized, we refer
to these dynamics as CL (region III) in this region coexisting syn-
chronized solutions were also found. The next region consists of CL
states together with decoherent solutions (region IV). Region V is
only decoherent. The topology of this map also reveals the ability of
the control gains to impact the coupling strength between the oscil-
lators. An example of the synchronous behavior of the single array
is given in Fig. 17. It shows gain I'; = —6.6, —5, —4 from left to
right, and the system transitions from an IP synchronized periodic
motion to decoherence. The decoherent dynamics are displayed for
a quasiperiodic response and for chaotic oscillations and rotations.

D. Chimera-like response

The quasiperiodic response can also enter into a CL state
(Fig. 18); in these dynamics, two of the three oscillators are syn-
chronized IP, and the third is asynchronous in relation to them. To
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FIG. 17. Oscillator phase (top), Kuramoto parameter |Z| (center), and time
histories (bottom) for synchronous to decoherent dynamics with I'y = —4 and
increasing values of ;.

1) ' r ;
ﬂunm lu'U'-W\ﬂljﬂﬂl ot N 'Jl o

i

illustrate these dynamics, we define two populations within our sys-
tem: the first is defined as the solution to Eq. (49) for N = 2 (noted
as Zy—,) and the second is for N = 1 (noted as Zy—;). We use this
to display the phases of the populations. However, since the size
of Eq. (49) for N =1 is always 1, we display the size of Eq. (49)
for N = 3 (noted as Zy—3). This analysis enables us to define a CL
state as a state in which |Zy_;| # 1, yet the phase of Zy_, ~ 0 and
Zyo1 # 0.

¥(Z)

R(Z)

FIG. 18. Oscillator phase (top), Kuramoto parameter |Z| (center), and time
histories (bottom) for CL to decoherent dynamics with I'y = —4 and increasing
values of 3.
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FIG. 19. Time histories (top-left), conjugate momenta Poincaré maps (top-right),
the time history of the magnitude of Kuramoto order parameter |Z| (bottom-left),
and phase of |Z| for 'y = —4 and I'; = —6.6 and IP initial conditions.

E. Coexisting solutions

We note that regions II, IIl, and IV contain different coexist-
ing solutions. We simulate for the initial condition given in Eq. (48)
and for I'; = —6.6 and find a periodic IP synchronized response
in Fig. 19. When altering the initial condition to an arbitrary one,
we find that a periodic solution is maintained; however, the syn-
chronous dynamics of this solution break down. This solution dis-
plays a static pendulum that does not oscillate, while the two remain-
ing display AP synchrony (Fig. 20). This topology and the fact that
there are three oscillators cause the size of the Kuramoto order

I (\ “ “ { 0.04
\ ll ' “ ‘ 'l ‘ H [ O W} ’ 0.02
‘ ‘ ‘ } -0.02

12
3(2)

T R(Z)

FIG. 20. Time histories (top-left), conjugate momenta Poincaré maps (top-right),
the time history of the magnitude of Kuramoto order parameter |Z| (bottom-left),
and phase of |Z| for 'y = —4 and I's = —6.6 and arbitrary initial conditions.
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parameter to settle at | Z| & 1/3, this constant value (which is differ-
ent from Z = 1) represents a constant phase difference between the
oscillators and is known in the literature as a stable chimera.” We
note that these coexisting solutions were not uncovered by Martens
etal’

VI. CLOSING REMARKS

We derive a consistent nonlinear model for the self-excited
dynamics of an IWP array that enables the investigation of synchro-
nized, decoherent, and chimera-like states. The dynamical system
response includes periodic limit-cycle oscillations and nonstation-
ary quasiperiodic and chaotic dynamics. A weakly nonlinear con-
figuration was derived by tuning the system parameters, and the
synchronous nature of the system was analyzed by applying asymp-
totic multiple scales. This analysis led to algebraic conditions for IP
synchronization, revealing a region adjacent to stable equilibrium
solutions in which IP synchrony may emerge. The strongly non-
linear dynamics of the IWP array were studied by formulating a
bifurcation structure with respect to the linear control law applied to
the inertia wheel. This bifurcation structure together with numeri-
cal simulations uncovered regions of stable limit cycle oscillations,
quasiperiodic solutions, and chaotic oscillations and rotations. A
Kuramuto order parameter analysis was applied to investigate the
synchronous dynamics of the strongly nonlinear system reveal-
ing regions of synchronous and decoherent dynamics. CL states
(dynamical states in which two elements are synchronized, whereas
the third is desynchronized) were also found by considering a slight
alteration to the Kuramoto order analysis. The mapping of these
solutions revealed several regions of coexisting solutions, and the
progression of solutions from synchronous through a CL state to
decoherence when a control gain is increased.

Future research on the synchronous and decoherent dynamics
within the IWP array could include experiment-based generalized
forces for a more realistic dissipation model for friction in the
bearings. Furthermore, the investigation could include alternative
nonlinear feedback mechanisms for inertia wheel control to deter-
mine the elimination or enlargement of the parameter space of
chimera states. We also note some open questions that still remain
and could also serve as objectives for future research. Namely, (i) is
the chimera state a local or global phenomenon? (ii) The Kuramoto
order parameter Eq. (49) is a very effective tool for determining
the degree of synchrony of large arrays of oscillators that are per-
forming periodic oscillations. However, when the size of the array
is decreased (as it is in this study), a chimera state is more difficult
to uncover. Furthermore, when the oscillators are no longer oscillat-
ing with one frequency, but rather are in a state of quasiperiodic or
chaotic oscillations, the application of Eq. (49) is far from trivial. Is
there another mathematical tool that can be developed to determine
the synchrony of non-stationary oscillations?
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APPENDIX A: KINEMATICS

First, we find the distance to the bar and wheel from a fixed
point above pendulum i,

ry1 = —ly & — Ly oncosyy -y,
Tyo = ly X — lyemcosy -3, (A1)
m,=1l,siny - X —1I, cosy - y.

Next, we find the distances to pendulums and wheels
i—1,4 andi+ 1,

Ipi1 = (lysiny + L, sin6,_y — 1) - X — (Iy cos ¢ + [, cos6;_y) - §,
rpi = (ly siny 4, sin6;) - X — (I cos ¥ + 1, cos 6;) - 3,
Ipiv1 = (lysiny + L, sin6;y 4+ 1) - X — (Iy cos ¢ + I, cos 6;11) - 9,
(A2)
ryio1 = (ly siny + 1, sin 0,y — ) - X — (Iy cos ¥ + 1, cos 0;_,) - y,
ry; = (ly siny + 1, sin6,) - x — (I cos ¢ + 1, cosb;) - 3,
Iyit1 = (ly siny + 1, sin 0y + 1) - X — (Iy cos ¥ + 1, cosB;y1) - §.

By deriving the distances with respect to time, we find the velocities
of the wheel and pendulum,

Epio1 = (lw/} cosy + lpé,-,l cos 9,-,1) X
+ (lv,llf sin 'l// + lpé;;] sin 9,',1) . j\/,

Iy = (lwﬁ cos Y + lpéi cos 0,-) X+ (lw/) siny + lpéi sin 9,) A

piy1 = (L/,l/} cosy + lpé,-ﬂ cos 9,-+1) X

+ (lwllf sin 'l// + lpéprl sin 9,‘+1) . 5/,

Fil = (lv,tﬁ cos ¥ + I,,6i_; cos 9,»_1) X
+ (ll,,{b siny + 1,6;_; sin 9,~_1) -9
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Ty = (lww Ccos w + lwéi Ccos 0,) X
+ (Iyvr sinyr +1,6;5in6) - 3, (A3)

Byl = (lwl.ﬁ cos Y + lwéi+1 cos 9i+1) X
+ (11//11’ siny + lwéi-H sin 0i+1) - %,

Iy = lel/} siny - 3,
ry, = lel/} siny - 3,
¥y = Ly cosy - X+ Ly siny - 5.
By squaring the velocities, we find
2= (Uy) + (i) + 20, Y6iy cos (¥ — 6iy),
2, = ()" + (1,60 + 21,16, cos (¥ — ),
20 = ()" + (i) + 2Ly L6 cos (W — i),
2, = ()" + (b)) + 20y L6 cos (W — 6i0),
2= (i) + 1,6)" + 20, L6 cos (W —6),  (Ad)
200 = BU)" + (Wbin)” + 21y L biay cos (F — Bi41),
2, = (yen¥ siny)’,
2, = (g siny)’,
i =,9)"
APPENDIX B: FORCING VECTOR ELEMENTS

The elements of the generalized forces are given explicitly
below:

.\ —1[Fis¢; + F. cos A
f1 _ Mif det (M) |: 1567 52143 1 ]’
+ Fes a3 cos A; + Frapis cos Ay

picos?A;
—Fs, 22
+ U35€08"Ajpr — o

(F1567 + Fe3 43 cos Ai)
+ M3 COS A,‘_l
+ Fraps cos Ay

>

fo=—p} det (M)_l

(u%coszAH > B
+ u3cos’Ajpy — o

fi= —d det (1\”4)_1

>

+ Fy4j43 cos AH—I i
;/,3cos 2Ai N
—Fy +;L3c0s2A
fi= =i det (M)_l ,
F1567

+Fsppus cos Ay | s cos Ay

+F64M3 Cos A,‘

pubs.aip.org/aip/cha

_F (u%coszAH + u%coszA,) 7
5
+ 13c08* Ajyy — o

+Fi567 4w
+Fs3[dy (lu%C;)S'ZAZi )
frm—pider(sr) | NHmesAm Tl
—Fipsty, cos Ajy
+Fs3 /431, COS A;
+F7ap3py cos Ajyy
B (F63 cos A;

214, cOs A
+F4 cos Ai+1) Hattr o

(ugcoszAi_l + //,gcoszA,) T
+uicos’ Ay — s

+Fis674
+Fa (MgCSSZAzH )
fomptaa(i) | VoA
—Fp3/a, cos A;
+Fsapbs by cOS Ay
+F7apk3 b €08 Ay
Fsycos Aj_;
B ( +F74cos Ajyy

) W3y €OS A

_F (ugcoszAH + u%coszAi) T
+M§C052Ai+l — M2
+Fis567Mw
2002
. +Frapbyy (:L_3C§)S Azzl _ )
f7 _ —ll«fv det (M) ) M3CO8"Ajyy — U2 ’
—Fspspy cos Ay

+Fsa 3w COS Ay
+Fe3 3w COS A

Fsp cos A
B <+F63 cos A;

) U3 COS Ay

and

det (M) = —/Li, (,ug cos? Ay + ,ug cos® A; + ,ug cos? Ajyq — ,uz) ,

Fis¢7 = Fy — Fs — Fs — Fy,

Fs, =Fs — F,,
Fe3 = Fs — F3,

(B1)
F;y =F;, — Fy,

P1:F1+F2—2F5—F6—F7,
Ey=F +F —Fs—2Fs— F,
P3=F1+F4—F5—F6—2F7.
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APPENDIX C: DIMENSIONAL PARAMETERS and the sub-matrices Sy and S, are

The dimensional parameters as estimated from previous exper-
imental setups’”** are given in Table III.

c ¢ ¢ ¢ cp O 0 0
TABLE lIl. Dimensions of system elements in S units. © & G G G o 00
0 Ch € C4 Co Cg C10 0
Rod Beam Pendulum Wheel So = G & & 1 00 0 N
3 €5 €7 Cg 1 0 0 0
I, =0.1 I, =1.246 Iy =0.382 1, =0.2865 a & 6 o o 1 0
wy, =0.02 wp = 0.02 w, =0.02 d, =0.3735 0 ¢ & & & o 1 0
t, =0.01 t, =0.01 t,=0.01 t, = 0.02 0 0 ¢ g ¢ ¢ o 1
my, = 0.054 my=06728  m,=02063  m,=>59165 e e e e 0 0 0 (E2)
I, =468x107°  [,=0.0871  I[,=0.0025  I,=0.0026 Voot e o
Ly om =0.05 l,=0.191 0 & & & & oo 0 0
Ve i 4 ) 0 ¢ ¢ ¢ ¢ cg ¢ O
S, = 3 €7 C9 1 0 0 0 0
""la s g o 1 0 0 0
0 Cc3 C5 (7 Cy 1 0
0 ¢ ¢ ¢ ¢ ¢ 1 0
APPENDIX D: MatCont FREE PARAMETERS 0 0 ¢ ¢ 6 ¢ ¢ 1
The free parameters used in all MatCont schemes are as follows:
. The solution satisfying
TABLE IV. Free parameters used in MatCont.
InitStepSize 1x107*
MinStepSize 1x1071° detS=0 and detSy-detS; >0 (E3)
MaxStepSize 1x 1072
MaxNewtonlIters 3
MaxCorrlters 10
MaxTestIters 10 produces one pair of pure imaginary eigenvalues for the Jacobian
VarTolerance 1x10-10 matrix J of the single array system.
FunTolerance 1x10710
TestTolerance 1x1071°
Adapt 5
Jacobian Increment 1x1071° APPENDIX F: COEFFICIENTS OF NATURAL

FREQUENCIES

APPENDIX E: ANALYTICAL HOPF THRESHOLD (x € R'")

2 2 2
Following Guckenheimer et al,"’ we construct the Jacobian as = {F1(H2 — 3 cos Aj_)” + 2I'7(cos A; + cos Ay ) |:(l/«3 — U2)

matrix J, and the characteristic polynomial Zif:o c,A". We define

i 1
the Sylvester matrix of the system as n : (oS A; + 08 Avay) — 2Tk 1

Co G € C C ¢o O 0 0 0 i+l il
2 2
0 ¢ ¢ ¢ ¢ ¢ ¢co O 0 0 + 4T ks Z (cos Ak) — 2Nk s Z (cos Ay)
0 0 Co C Cy Ce Cg C10 0 0 k=i-1 k=i—1
0 0 O ¢ ¢ ¢ ¢ ¢ ¢ O i+1
s — 0 0 0 0 ¢ & & ¢ ¢ c (E1) + 2T 1y (Mz — M3 Z (cos Ak))

“le o s ¢ ¢ 10 0 0 0] k=i—1
0 GG € €3 ¢y Cy 1 0 0 0 i1 1/2
0 0 ¢ ¢ ¢ ¢ ¢ 1 0 0 2 2 2

+ 4k cos” Ag) + (k — N F1
0 0 O ¢ ¢ ¢ ¢ ¢ 1 0 Hs kgl ( k) ( #a) (FD)
0 0 0 0 C1 C3 Cs C7 Cy 1
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i+1 2
ag =T} |:(ll«2 — 15 Y (cos Ak):|

k=i—1

i+1

—2I'k |:/L2 — 2u§ Z (c:os2 Ak)

k=i—1

i+1

k=i—1

+ s Y (cos Ay)

i+1 }
k=i—1

+2IN 1, |:ll«2 —Tus Z (cos Ak):|

i+1

12
+ 4Kp,§ Z (cos2 Ak) + (k — ,uz)z} . (F2)

k=i—1
APPENDIX G: CUBIC ORDER SYSTE
o+ 3Ly, m,,

M= (Elz)r 1 - Iaxs
(mls) Mo - I3xa

e
Il

Da¢eior + 1000, + 1) (9

3¢ + 1200 + T (9

APPENDIX H: SECULAR TERMS

i A} v’
—3 Y iy [(Ak - é‘) ef,k] - K<1// - ?) — 8y ¥
A3 93
U3 <Ai71 — 16_1> 1//3 - (9,;1 - %) — 86,i—10r,i-1
A3 93
U3 (Ai - ?) Y- <9i - é) — 8p,i0z.i

A 9
M3 (Ai+1 - 6“) ‘//fz - <9i+1 -

03
Ci¢ei + 20, + T <9i - —l>

M
m,;;

M- Taxs |
MHw - I3><3

3
i+l
T) - 89,i+19‘t,i+1

N
i—1 6
6

G
i+1 6

.0 kb .
g = (2w 1) e — A+ TSCTZGlAlAlz

aT,

=+ (3b1w22 —b581/,602i—

3 bl C()z3

TzaiA
w2+l"3b7i>e !

b, wy? Iy b b; 0,
by @,* + by wy* — - A
+<1w2 T w2+F3b7i a)2+l"3b7i 2
b, 6023 Iy by by,
by wy* + by wy* — — A
+<1w2 * 2@z w2+1"3b7i a)2+1"3b7i 3
bl 6023 1—‘Il bl b7 (23
+ (b1 ® + by 0)® — - Ay
(”"2 2O A Tabi wtTabi)

(H1)
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Bl 1-
=(—2wi)— A — A, A
g = (2w, i) T, 2+2 242

+ bw2+hw2_b3—w23 el2oi g
3 W2 4 W2 a)2+l"3b7i 1
b3w23 Fl b3b7602
+ —b(S,‘, i— P . A’ H2
( 6 %04-1 @21 a)2+1"3b71 w2+l"3b71 2 ( )

= (-2 ')8A+1AA2
=(=2w, i) — sl
13 2 T, 3 233

b3 a)23

4 b 2+b 2 eTzaiA
(3(”2 T AT by !

by w,° | N
+(=bedpimri— ———— — 2T ) A, (H3)
(1)2+F3b71 0)2+F3b71
(=2 ')—3 A+1AA2
=(—2w1 —
14 2 T, 4 5 4 Ay
h3w23 :
b 2 b 2 T Tme thﬂA
+( 3" + by W) 0+ T b1 e 1
b3a)23 'y b3 by w,
—bg 8p.; i— - A, (H4
+( 600 021 w, +T3b;i w,+T3bsi o (H4)

2ng7w22(F3b7+w2i)i Toi O
Sis=\|— 22 <an M
2132 b,% w; + 2,3 T,

i b7 (F3b7 +CU21) (—21F3w22+4F1w2+2F1 F3 b7l)
2F32b72w2—|—2(u23

ad
X — A2

T,
(F3 b7 + [O))) l) (2 Fz a)23 + 2i FZ F3 h7 a)zz)

2F32 b72 w) +2(1)23
I b7 (F3 b7 + w, 1) (—1"1 F3 b7 w, + Fl a)zz l)
2F32 b72 w) +2w23

by
J’_

2

Ay A%, (H5)

2F3b7w22(1"3b7+w2i)i Toi O
s = | — 272 <an M
2052 b," wy + 2 )8 T,

i b7 (F3b7 —|—a)21) (—21F3w22+4F1w2+2F1 F3b7l)
2F32b72w2—|—2w23

X — A
AT,

(T3 by + @) (2T2 2° +2i T, T3 by ,?)
2T32 0% wy + 2 w3

N by (M3 b7 + @,1) (=T T3 by @, + Ty @,%1)

2T32 b2 wy + 2w,

by
J’_

3

A3 A%, (H6)
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2F3b7w22(r3b7+w21)i Tyoi 9 A
— | - € e
817 2 F32 b72 o +2 w23 BTZ !

n b7 (F3b7+0)21) (—21F30)22+4F1(1)2+2F1 F3b7l)
2F32 b72 [} +26()23

a
X — A4
aT,
(F3 b7 + w, 1) (2 Fz (1)23 +2i Fz F3 b7 0)22) A
2 F32 b72 w,; + 26()23
n b7 (F3 b7 + w; l) (—Fl F3 b7 w, + Fl (022 l)
2 F32 b72 w) + 26()23

by
+

4

AA2. (HY)
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